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OPTIMUM GEOMETRY AND INITIAL SHAPE FINDING
OF CABLE STAYED BRIDGES

Zidan, M., Fayed, M.N,, Shuaib, M.F., and Hilal, M.A.

ABSTRACT

The optimum geometry design of cable stayed bridges could help in the material and the
cost minimization of such structures. An optimum design algorithm has been proposed for the
analysis and design of Cable Stayed Bridges (CSB), for their minimum weight. In this procedure, a
computational method is presented to determine the initial shape of cable stayed bridges under the
action of dead load of the girders and pretension in stay cables. The proposed optimum geometry
design is achieved to satisfy both stress and displacement constraints, considering the member
sizes and the geometrical design variables. A hybrid method is proposed by using the combination
of a derived optimality criterion method and the suggested fully utilized design algorithm.
Numerical investigations arc performed to verify both the efficiency and the mathematical
robustness of the proposed algorithm. The practical applicability of the proposed algorithm is
made on the Suez Canal cable stayed bridge; the obtained results are analyzed and discussed.
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INTRODUCTION

Cable-stayed bridges are very appealing
aesthetically and are very important [lifeline
structures [1,2 and 3]. The optimum design of cable
stayed bridges is usually a nonlinear mathematical
problem, the nonlinearity exits in both the design
and the structural behavior. This may lead to
oscillation and divergence in the pass to reach the
optimum design. The initial shape finding of cable
stayed bridges is carried out to reduce the deflection
and to smooth the bending moments in the main
girder, The initial shape of a cable-stayed bridge
provides the geometric configuration as well as the
pre-stress distribution of the bridge under the action
of girder dead load and the pretension forces in the
inclined stays {4, 5 and 6].

In the present work, an optimum design
algorithm for cable stayed bridges, is proposed based
on the optimality criteria conditions and the gradient
methods. The optimum resizing of structural
members is carried out using the optimality criteria

methods with displacement, stress, and buckling
constraints. A detailed hybrid method is proposed for
the optimum geometry design of cable stayed
bridges. The proposed algorithmm combines a
developed optimality criterion and the suggesied
modified fully utilized design method for the shape
optimization of structures. The proposed optimum
geometry algorithm is applied on some of the
published design problems and an existing cable-
stayed bridge to explore the efficiency, reliability, and
applicability of that algorithm [7]. Discussion of the
results is presented to show the effectiveness and
capability of the proposed algorithm.

STATIC ANALYSIS BY ENERGY METHOD

The total potential energy in displacement space

Total potential energy (W) of the structure can be
written as [8 and 9§:

f 12 12 12
W=Z[UytE DY x K% tTE2(QJ) %] +
n=l s=1 r=1 s=1
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N
5):[U.,,,+Tne+(EA/2L,,)e2}n—zF..xn e))

n=1 n=1

Where,

Where; (U,N) is the initial potential energy; (N} and
(f) are the total number of members and degrees of
freedom respectively; (%, X%, and x;) are the
displacement vectors; [Kq] is the tangent stiffness
matrix; (Q,) is the finite deflection force and (F,} is
an element of the applied loads. (T,) is the initial
tension force in cable members. (e) is the elongation
of cable member or pre—stressed pin jointed-member,
from (x} to (x+Dx) in displacement space.

Minimization of the total potential work

The displacement vector [x] is found from the
following iterative process [12, 13 and 17 :

e ={x]itSe(¥ (2)

in which , k = iterative index , §; = step length, [v]
= conjugate gradient vector for iteration k.

For each iteration cycle, the current values of the
conjugate gradient vector {v]k, are determined from:

[Vl = - [gl + Bk [VIka 3)

where , [g] is the gradient vector and By is
determined from Fleicher-Reeves [12 and 13]
formula for conjugate gradients , given by :

By = [gli' [zl / [glg " [ghen @)

Initial Shape Finding Of Cable-Stayed Bridges

The computation of initial shape finding starts
with zero or very small tensile forces in the inclined
cables [4 and 5], based on reference configuration
having no deflection in girders and zero pre-stress in
any element. The equilibrium position of the cabile-
stayed bridge under dead load action is first
determined iteratively by the energy method. This
first determined configuration satisfies the
equilibrium conditions and also the boundary
condition. For shape ieration, the cable axial
determined in the previous step will be taken as
initial element forces for inclined cables. A new
equilibrium configuration and such cable initial
forces will be determined again. During shape
iterations, several control points (nodes of
intersection between girder and cables) will be
chosen for checking if the convergence tolerance is
achieved or not, In each’shape iteration, the ratio of
vertical displacements at the control points fo the
main span length will be checked.

| Vertical displacement at each control point] <

| mainspan length |-

The shape iteration will be repeated until the
convergence tolerance &, is achieved.

OPTIMUM DESIGN APPROACH

1 - Members Resizing Algorithm

Problem Formulation

The optimum structural design problem can be
defined as finding the design variable vector that
minimizes the objective function (the total volume of
the structure) in the following form [8,13 and 14]:

NE
i=l

Satisfying
fi iz pi 2

Bk= Z Kgrxrd| + [Sa*"iic] —-F =0 (6)
n=1 [ n=l PR n

s=l...... , nn

Subjected to stress constraints

G, =f-Fy <0 i=1...,0 @)

k=1,...,nLc
A; > Anin i=1,...ng (8)

and displacement constraints
Gd = Ujk - ﬂjk < 0 ) (9)

Where, y = objective function, L; = length of
member i , A;, = the cross sectional area of i
member , NE = total number of elements , g; (A, x)
= s element in the gradient vector of the total
potential energy , G, = stress constraints , Gy =
displacement constramts Ui = the actual nodal
displacement in the j* constrained degree of freedom

, Ux = the allowable nodal displacement in the i
constramed degres of freedom i = the actual stress
in i™ member due to the k™ case of loadmg condition
, Fi = the allowable stress in the i member, no=
total number of degrees of freedom , Py = the number
of stress consiraint, P; = the number of displacement
constraints, ng = munber of member groups, x =
displacement variable vector.

A mmmber of ways to establish the
relationships between the design variables and the
desitred sectional properties have been suggested to
remove the aforementioned difficulties [13].
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Stress Constraints Dominance

The following stress ratio recursion formula,
which is frequently used for stress constrained
problem can be used [13];

max|f,[

(A 10)
o F (

(Adyn1 =

where, ¢; = a constant which ranges from 0.990 to
1.00 and y = a constant which ranges from 0.3 to 1.0.

Displacement Consiraints Dominance

The recursion equation was developed as follows [15
and 156].

U, Y[ GY°
A; v+l = _q 2 — A'- 131
( ‘ [CzUP] { " Li } @

v

where B = exponent equals 0.75, 1 = relaxation
parameter that ranges between 0.003 and 0.6 and Cz
= a constant that ranges between 0.985 and 0.999
when Upq > U, otherwise its value 1s 1.0.

1I- Optimum Geometry Pesign Algorithm

a- A Derived Optimality Criterion

Applying the Kuhn-Tucker conditions for optimality
conditions considering the geometry design variables

{L,,), then [17]:
Ldar=Lda £ u/Cru, )" *

N J
(1Y a Ai [Cos(@li) [ 2, Ap (OwaLle)]})n (12)
i=1 j=]

‘Where: (a) is an exponent which ranges between 0.63
and 1.00; (1) is a relaxation parameter that ranges
between (.003 and 0.600; (C,) is a constant which
ranges between 0.985 and 0.999 when (W > w)
otherwise it equals to 1.000; and (n), and {(n+1)
indicate the indexes of the current iteration and the
next iteration respectively.

b~ The Suggested Fully Utilized Design

In this work, the geometry (L) [10], design
variables; and to apply the optimality criteria to the
active design variables.

(Ludns1={Lidn { (r+1)—r* Maximum (@i /g1 ) (13)

Where, (X is the current passive design variables;
both g ; and g * are the actual and limiting

constraints’ values respectively; and ( r ) is the
relaxation parameter which tends to zero near

optimum design.

¢- The Proposed Optimum Geometry Algorithm

A proposed design algorithmn is generated by
combining both the developed optimally criteria
method and the suggested [FUD] method. In this
method, the optimality criteria method is applied for
the first iterations, then the optimum geometry design
is using the Fully Utilized Design method to reach
the optimum design. The generated optimum design
procedure is both efficient and reliable. The proposed
method for optimum geometry design of cable
stayed bridges can be summarized as shown in

Figure (1) .
COMPARATIVE DESIGN PROBLEMS

Three bars truss

The proposed optimum geometry design
algorithm is applied to the optimum design of the
famous three-bars truss shown in figure (2). This
design problem was previously solved by Bremicker
et al. [18]. The design variables are the cross-
sectional areas of truss members that are divided into
three groups and the horizontal distance (b). Thus,
this is an optimum geometry design problem. The
structure is subjected to stress constraints under the
action of two loading conditions acting at joint 1 as
shown in the figure where:

Case (I); P; =-100 kN
Case (II): P;= 100 kN

Truss design parameters arc as follows: the
material modulus of clasticity (B) =2100 kN/mm?,
the material density (p) ~ 7.85 X 10 kg/mm’, the
allowable stress is 0.20 kIN/mm? for both tensite and
compressive stresses, the minimum cross-sectional
area is 1 mm , the lower bound on the geometry
design variable distance (b) is 400 mm, and its upper
bound is 2000 min.

The proposed hybrid method is performed
on this problem. The obtained minimum weight is
14.179 kg after 7 iterations. The minimum weight,
which was informed by Bermicker el al. [2], is
14.173 kg after 29 iterations, ie. the obtained
optimum weight is relatively the same as the
published optimum weight, and it is accompanied by
an efficient reduction of nuriber of iterations. The
obtained optimum distance (b) is 661.27 mm which
is bigger than 657.99 mm of Bremicker [2].The
comparison of results is presented in Table (1)
including the obtained resunlts by this work and those
of literature.

P2=-100 kN
P2=-100 kN
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Initial Shape Finding of Symmetrical Harp
. Cable-Stayed Bridges

A symmetrical harp cable-stayed bridge is taken
from Ref. [5]. Iis Geometrical properties are shown
in Fig.(3). The shape iteration control points arc
taken at joints 3, 6, and 7. The vertical displacements
at these joints are checked during shape iterations.
Four shape iterations are performed until reaching an
accuracy & =10 The moments, shear, and axial
force diagrams of the girder are plotted in Fig. (4).
The cable forces, vertical deflection at the control
points, and maximum positive and negative bending
moments in the girder of the symmetrical harp cable-

- stayed bridge, ate listed in Tables (2, 3 and 4). From
the listed results, it is clear that in this example, the
deflection, maximum moments, and shear forces in
the girder, are considerably reduced and the diagrams
become very smooth after the shape iterations. The
axial force in girder slightly increases after shape
iteration because of increasing in pretension forces in
the cables.

Optimum Geometry Design
of Suez-Canal Cable-Stayed Bridge

A real bridge (Suez-Canal cable-stayed bridge) is
chosen as a case study [19 ]. Svez Canal double plane
cable-stayed bridge, Fig. (5) is a high way road
bridge with central span of 404m and two side spans
of 163 m. Its two towers have total height of 155 m
each one, which is made of reinforced concrete box
sections in the form of H-shaped frame. 128 Cables
are arranged in a double plane over the bridge length,
with 10 - 12 m spacing, in a semi fan pattern. The
original design of the deck congists of a steel box
girder having a wide of 20.8 m (4 traffic lanes, 0.8 m
side walks and 1.2 m median strip) and a depth

- varied from 1.2 m at the edges to 2.6 m at the middle.
The upper and lower decks are made from
orthotropic plates with closed 1ibs. The outer sides
and the two longitudinal stiffeners are made from
solid plates of thickness 16 mm and 11 mm
respectively. At cables locations and at mid-distance
between cables, solid steel cross diaphragms are nsed
of a thickness of 10 mm for the purpose of
strengthening the section. The consummation of steel
per/m’ of deck was found approximately 480 kg/m>.

- Used Materials:

*The reinforced concrete with 28 days crushing
strength Ceu = 500 kg/om®

*Concrete Young's modulus of elasticity (E)=
335t/cm”

*Reinforcing steel ST 36/52 (Egyptian Standard
Specifications)

*Stay Cables F gimae = 18000 kg/em®

*Young's modulus of elasticity (E) = 2000 t/cm?®

- Idealization of the bridge main clemenis:

Deck: Three different cross sections are chosen for
the deck along the longitudinal dircction of the
bridge as shown on Fig. (5). The cross section areas
for the said sections are given in Table (5). These
parameters are calculated from the actual
configuration of the deck cross sections.

The design relations linking the deck cross-sectional
area (Ap) with its section modulus (Sp), and moment
of inertia (Ip) can be expressed as follows:

3 3 2
124p H + 1045 254 H (14)

I=

PTEAWID  3aH+wy | HAWID

o oM sipn g
S(H+WI2 3H@H+aw)Y H+WI2

Where, (H) is the given deck depth; and (W) is the
given deck width, as shown on Figure (6).

Cubles: The cables shown on Fig. (5) are divided to
four groups. The cross section area for each group
is taken from the structural drawings of the bridge
and is summarized in Table (5).

Pylons: The pylon has variable cross section along its
height; four different cross sections are selected to
represent the variation of the pylon. The cross
sections of one leg of the pylons of the bridge are
presented in table (3). The pylon section in the
present study is assumed as hollow box section as
shown on Figure (6). The design relations linking
the Pylon cross-sectional area (Ap) with its
section modulus (Sp), and moment of inertia (Ip)
can be expressed as follows:

A, +412Y
b= = 24 (—%—LJ - Al (e

2
_ 2t Ap +412 2
8p= e [2Ap | E— | - A 17
T 3(dp +41%) I [ 41 J Pl ()

Where; {t} is the given wall thickness of the pylon.

The initial shape iterations procedure as well as the
proposed hybrid method is performed on the Suez
Canal Bridge, assuming the design variables as the
cross-sectional areas of the bridge elements and the
Pylon Height (Hy). The results show that the
optimum weight / quantities can be obtained at pylon
height of 167m instead of 155m (assuming the height
of pylon below the deck is fixed). The ratio between
the optimum arcas (weight) obtained in this study
and the existing deck areas (weight) is ranged

between 75% and 95%. Also, the same ratio in

pylons gives a percentage ranged between 79%and
102%. However, in cables, such ratio is ranged
between 104% to 200% (at short cables).
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SUMMARY AND CONCLUSIONS

In this paper, a proposed procedure that is
practically applicable to the optimum design
problems of cable stayed bridges has bean introduced
taking into consideration initial shape finding of
cable stayed bridges. The stractural analysis is
carried out by minimization of the total potential
encrgy of the stmcture by cenjugate gradient
technique. The optimurmm design is achieved to satisfy
the constraints of the design variables using the
optimality criteria method. A recurrence relation with
relaxation factors for updating the design variables is
implemented to obiain faster and more rates of
convergence to the optimum design.

The use of this proposed procedure shows how
successful it is in solving two examples available in
the literature for optimum geometry design and initial
shape finding of cable stayed bridges. The structure
under the various constraints such as the stress design
variable and displacement constraints can be
effectively analyzed and optimized by using the
present procedure of solution. Decomposing the
imposed constraints into two levels, i.e. the element
and structural level constraints and applying them at
different stages of optimization made the
optimization algorithm in this study very effective.
An iterative procedure is performed to represent the
efficiency of initial shape finding of cable stayed
bridges in rcducing the deflection, maximum
moments, and shear forces in the girder,

Further, the optimum design of an existing cable
stayed bridge was carried out using the procedure.
The results show a significant reduction in the deck
and pylon quantities (which represent the most
effective parameter in the overall bridge quantities)
rather than the cables, which increased significantly.
However, it can be concluded that the use of
optimum geometry design produces a significant
reduction in the optimum volume with respect to the
optimum volume of the fixed geometry. The
presented examples and applications demonstrate the
efficiency and robustness of the proposed optimum
geometry design. Algorithm which could be applied
to the cable stayed bridges with different geometry,
the pylon height, or the angles of inclination of the
cables, and the member's sizes as the main design
variables [19].
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Table (1): Comparative results of 3-bar truss.

Design variable { Present work | Bremicker [18]

Al (mm2)

754,084

753.74

A2 (mm2)

1.00

1.00

A3 (mm2)

~754.084

753.74

b (mm)

661.27

657.99

Weight - (Kg)

14.18

14.173

Table (2): Cable Forces for the Symmetrical Harp Cable-Stayed Bridge.

Shape - Cable NO.
- Iteration

Cable NO.

Force (kIN})

Cable NO.

Force (kN)

1-16

2-17

6749

3-13

5983

2-17

8150

3-18

7936

2-17

8737

3-18

8862

Shape

2-17

9053

Vertical deflection (m)

9387

Tteration -
Deflection

Joint

Deflection

Deflection

-0.5160

6

-1.0550

-1.3099

-0.2423

-0.0819

-0.0275

-0.0148

-0.0072

+0.0356

-0.0045

+0.0017

+0.0246
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" Element

Table {4): Maximum Bending Moments

for the Symmetrical Harp Cable-Stayed Bridge.

Maximum bending moments in the girder (KN m)

Joint

+ve Moment

Joint

-ve Moment

8

39,189

4

-106,788

12,000

-46,037

11,391

-30,443

14,100

-26,578

Table (5); Comparative Results for Suez Canal Cable Stayed Bridge,

Section

Actual cross
Sectional- area (ur’)

Optimized Area in
the present work

Ratio
(m?)

Deck

Segment 1

0.8054

0.602 74.75%

Segment 2

0.8254

0.770 93.29%

Segment 3

0.8154

0.770 94.43%

Cables

CltoC9 & C24 to C32

2 *0.006706

2 *0.0070 104.38%

C10, Cl1, €22, C23

2 *0.005479

2 *0.0070 127.76%

Ci2io Cld4 & Cl9t C21

2 *0.004251

2 *0.0055 129.38%

Cl5to C18

2*0.002751

2 *0.0055 [99.93%

Section under Deck

2*16329

2%*12.885 78.91%

Section over Deck Beam

2*9.700

2 *9.690 99.90%

Section at the mid. between
beams

2 * 8.800

2*8.975 101.99%

Section over upper Beam

2 % 10.00

2 *8.160

81.60%
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h 4

Input initial values member areas and
geometry design variables

h 4

h

Analvze the structure

A A

Compute displacement constraints aradients

h 4

Calculate Lageange multipliers for
active constraints

v

Compute new member size for stress and
displacement constraints

K

Check minimum member sizes

+

Apply the proposed initial shape procedure to
determine the cables initial forces

Check Shaping

iteration number

variables using optimality criteria

Checl% Geometry Yes R
optimization
iteration number
Y
Compute the new geometrical Apply the Fully Utilized

Design for geometrical variables

$4

F

Cirnvereance

Figure (1) Flow-chart for the Proposed Optimum Geometry Design Algorithm.
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Figure (4) Bending moment, Shear Force, and Axial Force diagrams
for Symmetrical Harp Cable-Stayed Bridge
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