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Abstract

An exact analytical solution is developed for an invergse
problem of steady heat conduction in a planar, two-dimensional
wall at constant thermal conductivity. The solution i1s in form of

a convergent series. Simple test problems, all have known sxact
soclutions, confirm that the method is correct and reliable. By
truncating the series, approximate splutions of simple form,
appropriate for thin watlls, result which compare well with Known

exact solutions.

1. Introduction

The glassical direct prablem in heat conduction 1s to determine
the temperature distribution of a bady from data specified over
the entire surTtace. fnalysis of such direct problems has  been
progresced resulting in a wealth knowledge concerning the
beghavior of both exact and numerical solutions; even for nonlinear
praoblems and irregular geometries [4-613.

Howewvar, in many physical situations the heat transter
characteristics at one side of a domain have to be evaluated from
corraspanding measurements at the opposite side. This problem is
distinctly different from the direct problem, and 1dentified as
inverse heat conduction problem {(IHCF) £21. In practice, direct
heat transfer problems occur mainly in design applications while
inverse problems are encountered in analysis of experimental data.
The inverse problem arises when a surface may be unsuitable for
fixkation of temperature sensor due to technical difficulty, ar
when the accuracy of the surface measurement may seriously
impaired by the presence of the sensor, which may arffect the
syurface condition as well as disturb the flow and neat transter
Close to the surface. Therefore, 1t is desired in some situations
to predict the temperature ang heat flux of a certain surfacs
from temperature measurements at the opposite side surtace only.
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Generally, the inverse problems in heat conduction are divided to
steady-state and transient problems (&1, *

In the present paper, we consider an inverse problem type for a
steady, 2Z2-dimensional heat conducticn in a plane wall of constant
thermal conductivity. The problem is characterized by specifying
temperature and its derivative at one boundary surface; both are
functions of the y—-variable (cf. Fig. 1}. The objective is ta
obtain the Z2-dimensional temperature solutian in the plane wall
inciuding the ether boundaries. The main difficultly of the
prablem lies in the fact that only two boundary conditions are
known and at one side surface. The problem is quite different
from the corresponding direct one for its solution four—-points
boundary conditions {(temperature of heat flux bpr thereof); with
two~points data for each coordinate; are necessary.

The present solution is somewhat similar to that af an
inverse praoblem in the transient, ane-dimensional heat conductian
obtained by Widder {235 if the y—-space variable in +the present
analysis simulates the role of the time variable in the transient
solution. The solution may be one of considerable practical
interest, however, tao soma experimaental heat transfer
investigations. The method may be applied to evaluate measured
data from a steady-state experiment, in whicthh the heat flux
prafile is measured at an isothermal surface, or temperature
pratile is measured at perfectly insulated surface.

2. Statement of the problem and solution

Wa consider an inverse problem of steady heat conduction in
- planar, two-dimensional geamebry ot constant thermal
conductivity. Figure 1. illustrates the problem, where the
temperature and its x—derivative are known as functions of the v
variable; both on one boundary surface at the plane x = 0. The
abjectivae at¥ the present wark is to obtain the {(2,y)-temperature
field for the complete domain including the boundaries.
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Figure 1. Problem illustration
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1f there is no heat generation, this problem may be maodelied
by Laplace eguation,
3T T ‘
- T = O, (1)
z z
ax ay
with the boundary conditions,
TO,y) = fly), (2a}
q
a1 x (0, y)
—_— = - = Y. . {Zb}
g k Py
®=0
To begin analysis, we start with equation (1) which can be

rewritten in the form

2 2
a T a'T (3

2 4

an &y

gbservation that the above equation is a relation between the x
and y second—order derivatives of the temperature. Therefore, the
differentiation of this equation twice with respect to x yields

a*y a* rav 3  ra’v
T Pt Z 4
ax ax’ oy ay* |eox
Substitution aof eqguation (3) into eguation {(4) results in
3T a'T

T = (-1 2 " (5)
% dy
Gereralizing equation [$)] for temperature derivativez of any
arbitrary =2ven order gives

znT n az“T

e (&)
o ay "

The same type of procedure is applied to the x-direction heat
flux, defined by Fourier'law:

_ art
R 7
Similarly, the differentiation of equation (7) twice with respect
to v variable, and the substitution from equation (3) results 1n

d7q a
R L

gy o’

($=]

Eguation (8) can be peneralized for the x—-gradients of temperature
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of arbitrary odd order by

aaniT ("L}n dan
—_—— - = X

Zrea - k 2n (9}

ax dy

The (x,y) temperature field within the plane wall may be
assumed to be an  infinite series 1nvolving the x—gradient of

temperature on the boundary surface at x = 0,
w0
a7
T I= ([} —
Ay w_(x " (101
®x=0
n=0

It is canvenient to divide the series in equation {10} into even
and odd terms,

@ 2 @

a r\T aanl.T
+ w (n) ———— (11)
Zn 2n+1 Z2n+il

an au
n=g =0 n=0 =0

Tix,y) = % (x)
Zn

For simplify notion in the remainder of the paper, we shall let To
= Ti{0,¥) and q0= qxto,y)- Substituting sguations {6) and () into

equation (11} results in

@ . e
d nT0 1 d?"g
Tix,y) = A {x) - = B Go e (1
™ zZn k n Z2n
dy dy
n=o ™0
where
&°nT da*"r AR (-12"™ a*g
= (-1)" 2, _ = — —=
axz: o dyzn aXvai . ke clyzn
. = *= axm
A Go= (-7 w0 and B ()= (=" (x)
1] Zn . n I+ 4
Equation (12) is the general solution of the temperature field.

The remaining problem 1s to determine the functions A (k) and
n
B (#). These furncticons are determined by substituting equation
ia)
(12) into the basic differential sguation (1), this yields
«® F4 iy Zn
.. a4 1 .. d""q_
[} (x) + A (x)] " ° — - l% ESI Bn(x)] — =0 (14>
-1 n Ll &) n- ™
VAL dy L. dy

=Q = .
3 solution is abtained by requ?ring that each term inside the
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brackets aof equat:ion {(14) is identically zero, thus one obtains

A (w) = 0, a () = - a4a ()3 0 = 1,2,... {153
a n 1

) F)

Bo(x) = 0, B (x) ~ — B 1{x}= n=1,2,... (18)

n n—-
The boundary conditions on the Qntxl and Bn(x) functions are

determined from the requirsment that the problem solution exactly
matches the two known boundary conditions on the surftace at x = 0.
The first boundary condition (cf. eg. {(Za)) fulfills the " solution
sa that

had 2 *® z
d*"T 1 d "qO
Tla,y) = T = a (o) - B (O) (173
o n zn k n Zn
dy . dy
n=0 n=9o
This condition gives
a oy =1, B (0} =0 and A (0 =B (0) = Q3 n = 1,2,.. {18)
a 0 L n

Also the second boundary condition (cf. eq. {(Z2b}) satisfies the
solutzon that

@ Zn ® z
m
_ ar ‘ d To ‘ d qo
g = - ke = -k A (D) = + B (O} {193
o ax n zn n zn
x=Q dy dy
n=0 n=0Q
which aives
B (O =1, A (0} = 0 and A {0) = B {0 =03 n = 1,2,..-- (20)
) o n ™

The solution to egs. (1S)%{14) subject to the boundary conditions
given by egs. (18) and (20) compietely determines the A {(x} and
™

Bn(x) functions. Note that these functions must be determined in a
sequential marnner starting with Ao(x) and BO(x). Thus, the

salution are found to be

t__l)n Kzn (__1)n xz'l'\fl.
Rn(x) = _—TE;TT_ (21), Bn(x) = _—E;:TTT— ’ (227

It is important to observe that for an perfectly insulated surface
at x = ¢, the A{x)-series alone is the solution, while for an
ispthermal surface the Bi(x)-series along is the solution.

By substituting equatian (21)2(22) inte eguation 12, the
general solution of temperature field is
fos] 2 2 @
t_q(-llnx L o nTD 1 (_1}nx2n+1 Uano
TOny) = (2Zn) ! 2n T (Zn+1}1T zn 233
/ dy dy

=0 =0

62
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which may also be expressed in the form
@

az’r

L]
Tix,y) =|T_ - Zq | +Y a o e - E B (x) e (24)
0 K Q n

[

g™ I3

n=1 n=1
From the right-hand side of equation (23), it is important to note
that the term in the first set of brackets evidently satisfTies an
perfectly insulated surface eondition, whereas, the term in the
second seat of brackets satisfies a constant-temperatura
(isothermal} surface condition at the boundary x = 0. It is also
rlear that the terem inside the brackets in the r.h.s. of equation
{24) represents a steady ane—dimensiopnal heat canduction solation
(in x-direction} for constant T0 and qo values; and the effect of

two—dimensional heat flow are included in the remaining terms.

Finally, the x—-direction heat flux ¢can be calculated using
Fourier 's law and Eg. (23,
w _ © 5
(-1 " 22T gE 0y (-1)" %?" g%"g
g (y) =g - k 2+ e (25)
x [o] {2n—1}! zn (Z2n} ! Zn
dy dy

n= s n=1

Zn

Temperature and heat flux can be calculated at the epposite
side oY the domain Trom eq. (23 and eq. (23), respectively; with
N = W,

It is evident from equalions (24) & {(23) that the sotution is
explicit. The basic requirement of the analysis is that the
surface temperature and heat flux are assumed to be unifarm, also
being variable with the y-space variable at the surface % = 0. in
other words, the bwo functions fily) and @(y) should be continoues
and its n first derivatives are exsist. Subject to this condition
the method is applicable.

X. Test probliems

In the preceding section, solution of the stated problem was found
for arbigrary continues functions of temperature and heat flux at
the boundary surface (O,y). At this point, 1t is ieportant o
consider some examples of application of the solution in order to
illustrate the present method in more detail as well as to examine
its vatlidity. For this purpose, three test problems; for a 2-d.
plane wall of constant thermal conductivity, are considered. All
have known exact solutions obtained in other retferences {except
test prablem [ whose sglution is derived in Appendix (A)) by the
variables separation method used to solve direct problems type of
4-points boundary conditions speciTtied as two for each coordinate.

The two boundary conditionrs To and a, tcf. egs. {(2a,bl)) are only
reguired to carry out the present method. If either T0 or qo
is nat available, it will be derived from the known solution of

the test problem as in problems [} and [I1. The coordinates system
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shaown 1n Figure 1. is selected as a basis for these apptlications.
Test Problem I: The boundary conditions at the surface x= Q are:

_ — ncsn BY U A B (12)
To_ T{O,y)}= Asin - (I1?, qo K T . Q _

The problem represents the case of insulated surface condition.
Calculation of the right—hand terms of eq. (23) are presented in
Table I. The substitution from Table 1 into Eq. (23} gives

lis
Zn
= -ﬂ;;”i (13
Tix,¥l= A sin - X { L}, 3

n=Q

Table I. Calculations for test problem I

a*tr X d* g
A_(x) A ()= B_(x) - g B 0 ©
d)’ dyzr\
0 1 A sin s X 0
2 rd
(x) 1 3 ?
. T ET o[} aein % -5 0
-4 4
(x) 1 [n ¥ ()7
2 =T ZT[ Asin - 5T 0

The series on the right is just the hyperbolic cosine function,
thus the solutiaon can be expressed in the closed form

T(x,y) = A cosh % sin 5’-%’_1 (14)

which is the same result abtained in Appendix (A) by employing the
classical method of wvaritables separation using the 4 boundary
conditions: Ti{x,0)=T{(x,L)= O with the two described by eqs. (I11,2}.

Test Problem 11: The boundary conditions at the plane ¥ = 0 are :
sin E%

T = T(O,y) =0 (IT1) g=-k *pa—( (112)
O [v] L - mw
sinh -

The problem describes the case of isothermal surface condition.

In Table 11 the terms inside the two set of brackets in the right

of eqg. (23) are calculated. The substitution into eg. (Z23) yields
oo

. Ty
51N _L. : 1 *‘rﬂi}Zn-rt
(2n+13 " L

Tix = _
Xy W) A : p—p E
sinh _l..

(I13)

64
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Ihe series here is just the expansion of the byperholic. sine
function. thus the solution seems to be

. TN
sinh — "
Tix,y! = A sin ZZ (114)
Hw L
sinh -

which is the same sgalution obtained in ref. {5] by using the 4 b.

boundary conditions: T{x,0}= Tix,cl= T{d,¥v)= 0 and Tiw,y)= Asin E%.

Table II. Calculations for test problem IT

n A (x) T, a*"q
® R (x} B_(x) - °
™ a ay?” o T Bn{x) —
d vy
0 1 0 mx .
x [*:] Asin L/sinn™
(x)* 2 3
1 -—r o - B 1 (nx .
2! : 3—[7} Asin Z/sinnY
e .
2 —= 0 (3 1 frxy°
5 51 gT[ o Asin Zyeinnl¥

Test Problem III: The boundary conditions at the surface x= ¢ are:

T = Tio,y)= A sin 2L (160.1), a.= A kY sin Z¥ (111.2)
] L =] [ L

Calculation of the terms in the right of eq. (23) are In Table 11},
when substituted into eq. (23) this gives
@

ny ; 3 e} 1 eve R
Thay) =8 sin— 2 =T {:} - cz—n»;—n:{ :} LI
nEd

The serigs on the right is just the expansion of the expanential
fupction, canseguently, closed form is

L
Tix,y)= A & - 5in£§ {I11.4}
whlch is the exact solutian derived 1n reference (41 for the
b. conditions :Tix —myy! = Tlx,0= Tix,Ll= @ and T(J,y) = A 5in2§ ;
This problem illustrates the case of general solution, where

gach of T and g is given as continuous function of y.
o o

fhe results in Filgures 2a~-c show that the series solution is

appropriate for analysis of & planar, thin wall, specially
representation of the solution by onily a few termg af the series.
l.e., for a plane wall of thickness (w} much swmaller than the

characteristic length (L) of temperature variation { w <{ v ), the

truncated series solutiaons are caompared well with the exact
sojutian. It is also clear that the accuracy of the appro:ximated
series solutions depends on number aof series terms used, the wall

dimensions ratio as well as on the wvariation rate of ro and/or qa.
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Table 111. Calculatians for test problem 111
¢ d*"q
n A () Alx) i B_ () 2B {x) =
Eal n zn n n In
dy d ¥
(Y Xl asinX
0 i n51n-E Ly [ L] Sin—=r
z z a E]
_xn) 1 [mx Y (%} 1 fnx ny
' ! 7 1.] Asin-- 37 3!['-} A=in
txr* 1 (n= Ry () 1 nxl’ ny
4 AT v L] Qgin_L 51 ET[ L Q'SI.I'I—L
H H 2 H H
2M I+ I+ 1
() 1 i .1y in) 1 X .l
N TNT UEN [_L] Asin=r 2N L) ! (ZN+ 17 ! :.] Asin
40 " ; 70
= ) N 1
“ Figure 2o 804 Figure 2b /7
R 50
20 4 S 40 -
b
2 @ 30 4 2
10 4
2 20+
0 Z S 101 [
—10 T T 1 L T T Ll S S B [
- T T T T T T T T T LI
000.102030405080708091.01.11.2 0.00.10.20.30.40.5060.70.80.91.0 1.1 1.2
w/L W/L
50
- H =
s0- Flagure 2¢ 1
® ]
4_0_
E 4
=30
m -
o <07
Z ]
Figure 2. Truncated-series = 10t a
sotutions (eq. (24)Y with N E o 2
first terms of the series ¥s3 + -
in terms of the relative erronr =10 5 : T J
versus  the wall dimensions 0.0 ' !
ratio : (a) problem I {b) o1 w/L 02 23

problem (1 (c] prablem ITI.
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4. Discussion

So far, the Z-dimensional temperature sglution of an inverse
problem of sfteady heat conduction in the plane domain has been
pbtained. The prerequisite is that the temperature and its
x—gradient are given at the boundary plane x=0; baoth are
continuous and differential functians of the y variable. These two
functions must be continuous and differential. Subject to this
condition the present method is applicahble.

The present method is explicit, since all the derivatives of
Toand a_ are assumed known from given analytical expressicons. It

is important to note that in carrying out the analysis, no
reference was made to the boundary conditions on the two boundary
planes {(x,0) and {(x,L). However, this gmission is no <cause for
concern. Because of the known smooth nature of the Laplace
eguation, the temperature distributicon T(x,0) and T{(x,L) 15
uniguely specified when the surface temperature profile T{Q,y) and
its x—gradient are given over the interwval (0 £ y £ L),

The test probiems, presented in section 3, confirm this fact
and reveal that the present method is correct and reliable.
Resul ts show that representation of the solution by a few terms of
the series is appropriate for analysis of a planar, thin-wall.

In appendizx (B), solution of the problsm bas also been
summarized, however for the case of the two boundary cond:i:tions =
the temperature and i1ts y-derivative, are given at the Bboundary
plane y =0. The two boundary conditions are also assumed functions
ot v, which are continuous and differential . Expressions for the
xv—field of temperature and heat flux have been obtained which are
somewhat similar tao that obtained in the previcously described
case. Also test praoblem 15 applied to examine the validity of the
satlution. The results prove correctness of the present golution
and its indepsndence on the other boundary conditions.

The soiution may also be one of considerabile practical
interest, howaver, to Some experimental heat transfer
investigations, as for a steady experiment, in which heat flux
distribution is measured at an 1sothermal surtace, or temperature
profile 15 measured along an insulated surface, and 1t 5
desired to predict the corresponding wvalues of temperature and
heat fluxat the opposite side surface. However, in such practical
situations, the data are not available in  farm of convenient
theoretical expressions  for  temperature or heat Flux but as
tabulated data measured at discrete points. Therefore, to apply
the present solution, the data should be expressed analytically,
by curve—-fit formulas {(e.g., polynomiai) using (for instance) the
least squares technigue, 1n order to evaluate the derivatives in
equation (23). These derivatives may numerically be ewvaluated
direct fram data. Thus, a check on the validity of the truncated
series is avalillable.
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Appendix {(A)

Consider a Z2-dimensional plate with constant thrmal conductivity,
1n which the temperature at an insulated plane urface is given as

a sine function while the ather sides ar fixed at zera
temperature. The problem can be modeled by Laplace eq. (i) with
Ti{x,0) = O {tAL) Tlx,L) = 0 (AZ2)
ar =0 (A3) T(0,y) = Asin =X (A4}
ax o L

o=

The problem is a direct ane type since it has 4 b. conditions.
Using the variables separation method the soluton can be assumed

Tilx,y) = X} Yiy) (AS)
When substituted into Laplace equatidn (1) this yields
z z
LodX - 1dy (AG)
X a %7 Y d y®

The left side can equal the right side oniy if oth sides equal a

constant wvalue, say Kz

z z
Y s a3y =0 (A7) dX L% =0 (AB)
2 z
dy dx
Thus, the general solution, from those of eqgs. {(A7,8) is
R A
Tix,y} = (C‘cas Ay + Czs1n Ky)(Cae + Cde 3 (AT)

Aoplying the boundary conditions, (Al} gives 51= 0 and (A3Y gives

C3 = C4' Using these results with eq. (A2) yiels
—AL AL -
o = CZC‘ sin AL (e + g2 ), which reqguires sin AL = O ar A = -

As the governing differential eguation (Laplace =q.? is linear,
the solutions can be written as the sum of an infinte series:
<

Tix,yl= C sin Dﬂycaﬁhﬁi tAalg)
. n L L

n=0
=AL AL
where the constants are cagmbined and the &2 -+ e ) are replaced
by 2 cosh AL, Finally, the boundary condition (3) gives

na)
A sin X =Zc sin 1&¥ (A11)
L n L
n=1
which holds if Cz= Ca= <. -= and C1=A. Thus, the solution which

satisfies the boundary conditions is

T(x,v) = A cosh 3% sin 5% (AL2)



Appendix (B)

In this appendix we summarized the final expressions af solution
af the stated problem, in the case of beging the temperature and
its exterior y—gradient are prescribed at the side surface y =03
both functions in the vy variable. iI.e., the given boundary
conditions are :

q
T, )= ©(x) ap | = - GO e, (28)
3y %
y=0
To simplify notation, we 1let T = Ti{x,0) and g =g (x,0).
yo o ¥
y
‘?
L
2 ?
.
o W
T
Tix, 000060, 2l = siyy
y=0

Figure 1B.

The xy—field of temperature within the plane wall may also be
assumed to be an infinits Series involving the exterior y—gradient
of temperature on the boundary surface y= 0O,

n=m

™

T(x,y)=§ w (y) aT
™ n

Sy

n=0 y=0

Using the above expression with the given boundary conditien, and
following mathematical procedure similar to that performed in
section 2, the solution of temperature field is found

m e e}

T-“_l)nyZn dZnTyo 1 T(_l)nyzn-vx dznq o
T(A’yj __ZL_(Qn)! g2 k - (Zn+1)! 2n (4R

a0 i
“Also, the v—direction heat flux can b= calculated From
thne agave squation applving Fourier s law as

o a
r (_l‘n yzn—ldzn.r . (_]}n VZn dzni:l o
a0 = o ~ HZi, Tl *“;;y * (Zry _;:_f =
4 1 A
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Temperature and heat flux can be calculated at the opposite
side of the domain from eqg. (48B) and eg. (5B}, respectively; with
¥= L.

To examine the validity of this sclutian, we cons:ider probiem
tno. II in sec. 3) which has known exact solution. Fig- 1B is
taken as a basis for the applicatian.

Test Froblem : The boundary conditions at the boundary plane y=0

are: .

T =Tix,0} =0 {B&) g _= —kZA cosh (& (87)
vo yo L L.

Calculation of the right—hand terms of eg. (4B) are presented in
Table B. The substitution from Table B into eqg. (4B) gives

an

. e 1 ny ZN+1
T = —_ _——— )
{(x,¥) A cosh i L) E: (2N+l)![ C (BB
n=o0
The series on the right 1is just €the sine function, thus the

solution can be put in the closed farm
Tix,y) = A cosh(EE) sin(E%)

which is the same result obtained in PAppendix {(A) by the classical
method of variables seperationusing the 4 boundary cnditions. It
should be point that this proplem has also been solved 1in  test
oroplem I 1n Section 3applying the 2 boundary condition at the
plane x=0.

Table B. Calculations for test problem B

dZnT dzn
n A (y) Aly) —° B (y) -Lls
n n zZn n k n
dx dx
0 i Q v [EE] Hcash Ei
z 3 2
{y) (v} 1 oy g
4 s ]
() ty) 1 [ny X
2 7 ° S 5_'[ iy S
ZHN ZN+ L ZM+ 2
wiy) woiy) 1 ny T
(=1} ~—=— - —_— =
M P © D G (2N+1}![ » Acoshy

70
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Namenclature

Alx) % Blx) x—dependent coefficients, see egs. (21,22).

wix) x—dependent coetfficients, see eq. (10).

Aly) & B(y) y-dependent coefficients, see eg. (4B} in App. B.

wiyl y—dependent coefficients, see eq. (IBlin App. B.

9, #=direction heat flux at the boundary surface
at x = O, (qo = qx(O,yJJ.

qyo y—direction heat flux at the boundary surface
at y = 0, (g °=qy(x,m>), see eq. (IB) in App. B.

¥

k thermal conductivity.

L, W characteristic dimensians of the planar domain.
under consideration, see Figure 1.

T temperature.

T0 temperature specified on the boundary surface
at x = 0, (Tn = Tlo,y).

Tyo temperature specified on the boundary surface,
at yv = a, (7 °= T{x,) ), see eq. (1B) in app. B.

¥
Hyy cartesian coordinates.
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