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البحث ملخص  
حُس  انهىاء وأيًهؤ تًىائغ انًاء تانحًم انحش خلال كهف يسرطُم  انحشاسجَرقال َظشَح لإ دساسحفً هزا انثحس ذى ػًم      

ذًد انذساسح انؼذدَح  .انؼهىٌجذاس وانجذساٌ انشأسُه يؼضونه وَرى ذثشَذ ان ذسخٍُ انجذاس انسفهً تفُط حشاسي شاتدَرى 

انطاقح تاسرخذاو ذقُُه انفشق  اَرقالًؼادلاخ انحاكًح نهكرهح وكًُح انحشكح وانالأتؼاد حُس ذى حم  شُائٍتفشض أٌ انًائغ يسرقش و

ػهً وأَعاً ػذد ساَهً  8إنً  0.66 تٍُ تُسة ذرشاوح يا الاسذفاعج نؼذج قُى يٍ َسثح انؼشض إنً اًحاكان فُزذُذى  انًحذود.

انحشاسج خلال  َرقالإذى ذحهُم ويُاقشح ذىصَغ دسجاخ انحشاسج وكزنك . 610إنً  310ياتٍُ قًُره َرشاوح  انزٌو سذفاعأساط الأ

 .نهىقىف ػهً يذي انرقاسب تُُهًا ورنك انساتقح الأتحاز يٍ انحشاسج اَرقال تُرائج انحشاسج اَرقال َرائج يقاسَح ذًد هف.انك

 ىش 2 حرً سذفاعنلإ انؼشض تٍُ انُسثح صَادج يغ َضَذ وأَعاً ػذد ساَهً  صَادج يغ َضَذ انحشاسج َرقالإ يؼذل أٌ انُرائج أوظحد

 سذفاعنلإ انؼشض تٍُ ػذد ساَهً وانُسثحو انحشاسج َرقالإ ط انؼلاقح تٍُتذش يؼادنح ػهً انحصىل ذى. انُسثه هزج صَادج يغ َصثد

  .وانًاء انهىاء يٍ نكم
 

ABSTRACT 
     Theoretical investigations on natural convection heat transfer have been carried out inside 

rectangular enclosures filled with air or water. Heat transfer and fluid flow due to buoyancy 

forces in an enclosure are achieved. The vertical walls are insulated while the top wall is cooled 

and the bottom wall is heated under uniform heat flux. Steady laminar natural convection in air 

or water-filled, 2-D rectangular enclosure is studied numerically. The finite difference technique 

is used to solve the mass, momentum and energy transfer governing equations. The 

computational results are presented in the form of isotherm and streamline plots. Simulations 

are performed for several values of both the width-to-height aspect ratio of the enclosure in the 

range between 0.66 and 8, and the modified Rayleigh number based on the enclosure height in 

the range between 
310 and ,106

 whose influences upon the flow patterns, the temperature 

distributions, and the heat transfer rate are analyzed and discussed. The heat transfer rate from 

heated enclosure increases as the aspect ratio (A) increases until A=2 and then remains constant 

with further increase in aspect ratio. The heat transfer rate increases as the modified Rayleigh 

number increases. Nusselt numbers for both air or water filled enclosures are correlated with 

both aspect ratio (A) and modified Rayleigh number (
*Ra ). In order to validate the numerical 

code for the present study, present results have been compared with the benchmark results of 

previous researches. 

Key words: Natural convection, Heat transfer, Rectangular enclosure, Numerical analysis. 

 
 

1. INTRODUCTION 
     Natural convection in enclosures has been 

extensively studied both experimentally and 

numerically, being of considerable interest in 

many engineering and scientefic applications 

such as collection of solar energy, operation 

and safety of nuclear reactors, energy 

efficient design of buildings, effective 

cooling of electronic components and 
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machinery. Most of the papers in this field 

are substantially oriented toward the study of 

rectangular enclosures where the heat flow is 

typically unidirectional, i.e., the buoyancy is 

induced by imposing a heating either from 

the side (for conventional convection) or 

from below (for thermal instabilities) Catton 

[1] and Ostrach [2]. Ciofalo and Karayiannis 

[3] and Chinnokotla et al. [4] studied the case 

of enclosures having non-simple geometries. 

Mixed temperature and heat flux conditions 

on the same boundary wall were studied by 

November and Nansteel [5] and Valencia and 

Frederick [6]. Studies on natural convection 

in rectangular enclosures heated from below 

and cooled along a single side or both sides 

have been carried out respectively by 

Anderson and Lauriat [7] and by Ganzarolli 

and Milanez [8]. More recently the case of 

heating from one side and cooling from the 

top has been analyzed by Aydin et al. [9-10]  

who investigated both the effects of Prandtl 

number upon heat and momentum transfer 

inside square cavities and the influence of the 

aspect ratio for air-filled, rectangular 

enclosures. Shati et al. [11] performed an 

empirical solution for the case of radiation 

and natural convection in square and 

rectangular enclosures and also provided a 

correlation equation to calculate the total 

Nusselt number for these cases.   

     The aim of the present paper is to 

investigate natural convection in rectangular 

enclosures heated from below and cooled 

from above with adiabatic condition at the 

sidewalls. The study is conducted 

numerically under the assumption of steady 

laminar, two dimensional flow for different 

values of both the width-to-height aspect 

ratio of the enclosure in the range between 

0.66 and 8, and the modified Rayleigh 

number based on the enclosure height in the 

range between 310  and 610 , whose influence 

upon the flow patterns, the temperature 

distributions and the heat transfer rates are 

analyzed and discussed for air or water-filled 

enclosures.  

Nomenclature 
A    aspect ratio, (L/H) 

Cp  specific heat at constant pressure                         

       ( kkgJ / ) 

g    gravitational acceleration ( 2/ sm ) 

H   height of the enclosure (m) 

h    convective heat transfer coefficient  

      ( KmW 2/ )                                             

fk  thermal conductivity of the fluid 

       ( KmW / ) 

L    width of the enclosure (m) 

Nu  Nusselt number, (
fkLh / ) 

P     pressure (Pa) 

Pr   Prandtl number, (  / ) 

q"   heat flux ( 2/ mW ) 
*Ra  modified Rayleigh number based on the  

      enclosure height,( )Pr/(" 24
fkHqg  ) 

T    temperature (K)  

u     horizontal  velocity component ( sm / ) 

U   dimensionless horizontal velocity             

      component 

v     vertical  velocity component  ( sm / ) 

V    dimensionless vertical velocity      

      component 

x     horizontal coordinates  (m)  

X   dimensionless horizontal coordinates 

y    vertical coordinates  (m)  

Y   dimensionless vertical coordinates 
 

Greek Symbols 

   thermal diffusivity ( sm /2 ) 

   coefficient of volumetric thermal 

     expansion (
1K ) 

    kinematic viscosity ( sm /2 ) 

    dimensionless temperature 

    inclination angle 

    density (
3/ mkg )  

    stream function  ( sm /2 ) 

    dimensionless stream function 

    vorticity ( 1S ) 
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    dimensionless vorticity 

T  temperature scaling, ( fkLq /" ) 
 

Subscripts 
m    average 

C    cold 

f     fluid 

s     source 

 

2.MATHEMATICAL 

MODEL  
     The physical model considered here is 

shown in Fig. 1, along with the important 

geometric parameters. It consists of a 

rectangular enclosure of dimension, L × H, 

whose top wall is kept at a cold constant 

temperature, CT . The aspect ratio of the 

enclosure is defined as A = L/H. The bottom 

wall has an embedded symmetrical heat 

source with constant heat flux, q". In general, 

the physical model considered here is a two 

dimensional rectangular enclosure and 

sidewalls are considered adiabatic. The 

Cartesian coordinates (x, y) with the 

corresponding velocity components (u, v) are 

chosen. The gravitational acceleration g acts 

downward normal to the x direction. 

 

2.1 Assumptions 
     To simplify the problem, the following 

assumptions are made: the fluid is assumed to 

be Newtonian, steady, and incompressible. 

The thermophysical properties are assumed 

to be constant except for the density variation 

in the buoyancy force. The buoyancy effects 

upon momentum transfer are taken into 

account through the Boussinesq 

approximation. The viscous dissipation and 

radiation effects are considered to be 

negligible. The  third  direction of  the 

enclosure perpendicular to  the plane of the 

diagram is assumed to  be  sufficiently  long   

so  that the problem can   be  considered  to  

be  two dimensional. All physical properties 

are evaluated at the ambient temperature 

 

2.2 Governing Equations  
     Once the above assumptions are 

employed into the governing equations for 

steady natural convection flow. The  

conservation of mass, momentum, and 

energy equations can be written as: 
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     Where, u and v are the velocity 

components in the x and y directions, 

respectively. P, T, and   are the fluid 

pressure, the temperature, and the inclination 

angle of the enclosure with the vertical 

direction, respectively.  , ,  and   are the 

fluid density, the coefficient of volumetric 

thermal expansion, and the kinematic 

viscosity, respectively. T , Cp, and 
fk  are 

the temperature scaling, the specific heat at 

constant pressure, and the thermal 

conductivity of the fluid, respectively. 
    

2.3 Solution procedure 
     The governing equations given above, i.e., 

Equations (1) to (4), are given in terms of the 

so-called primitive variables, i.e., u, v, p, and 

T. The solution procedure discussed here is 

based on equations involving the stream 

function,  , the vorticity,  , and the 

temperature, T, as variables. The stream 

function and vorticity are defined by: 
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     The vorticity equation is obtained by 

eliminating the pressure between the two 

momentum equations, i.e., by taking the y-

derivative of Eq.  (2) and subtracting from it 

the x-derivative of Eq. (3). Using the 

definition of vorticity and the continuity 

equation, this equation can be written as: 
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The equation defining the vorticity and 

energy equation becomes: 
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     The equations (6) to (8) are converted to 

dimensionless equations. By using the 

following dimensionless variables: 

f
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     Where, X , Y ,  , , and   are the 

dimensionless horizontal coordinates, the 

dimensionless vertical coordinates, the 

dimensionless temperature, the dimensionless 

stream function, and the dimensionless 

vorticity, respectively.  L, ,*Ra  ,"q  and Pr  

are the enclosure width, the modified 

Rayleigh number based on the enclosure 

height, the heat flux, and the Prandtl number, 

respectively.  The dimensionless equations 

are: 
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Where the inclination angle,  , is equal to 

90
O
. The appropriate boundary conditions for 

the governing equations are specified as 

follows: 

Top wall:          0 , 0  22 /, Y  

Bottom wall:  0 , 1
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Y

 22 /, Y  

Right and left walls: 
2
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     The equations (10) to (12) are converted 

to linear algebraic equations by substituting 

the corresponding approximate finite 

differences and then solve this set of 

equations by using Gauss-Siedel iterative 

method. The numerical method is 

implemented in a FORTRAN program. 

Typical numbers of nodal points are adopted 

by 3737  uniform grid. The steady state 

results alone were considered when the 

convergence criteria defined by equation (13) 

are achieved. 
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Here   represents the variables ,  Ψ or  , 

the superscript m refers to the iteration 

number and ( i , j ) refers to the space 

coordinates. The local heat transfer 

coefficient, 
xh , is define as 
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"

 

at a given point on the heat source surface 

where  xTs
 is the local temperature along 

the heat source surface. Accordingly the 

local Nusselt number and the average 

Nusselt number can be obtained as: 
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     Where, )(Xs , and 
mh  are the local 

dimensionless source temperature, and the 

average heat transfer coefficient, 

respectively. The trapezoidal rule is used for 

numerical integration to obtain the average 

Nusselt number. 

 

3.RESULTS AND 

DISCUSSION 
     Numerical simulations for different values 

of both the modified Rayleigh number in the 

range 6
*

3 1010  Ra  and the aspect ratio of 

the enclosure in the range 866.0  A  are 

performed. The rectangular enclosure is filled 

with air or water. In order to point out the 

influence of 
*

Ra  and A upon the flow 

structure type and the temperature 

distributions throughout the enclosure, 

sample local results are reported in terms of 

isotherms and streamlines. In all isotherm 

plots, the contour lines correspond to 

equispaced values of the dimensionless 

temperature θ in the range between 0 and 1 

are presented. In all the streamline plots, the 

contour lines correspond to equispaced 

absolute values of the normalized 

dimensionless stream function are presented. 

Where the dimensionless stream function Ψ 

is defined as usual through U = ∂Ψ/∂Y and V 

= −∂Ψ/∂X. 

 

3. 1 Effect of the Rayleigh 

number 

     The hydrodynamic and thermal fields in 

the enclosure in the form of streamlines and 

isotherms contour plots are represented in 

Fig. 2-11 for enclosure aspect ratios of 0.66, 

1, 2, and 8, Rayleigh numbers of ,10,10 54  

and 610 , and working fluid is air or water. 

The buoyancy force is acting only in the y-

direction, the flow domain and boundary 

conditions are symmetrical and two counter-

rotating rolls, and of a single cell, that remain 

stable as the modified Rayleigh number 

increasing formed in the enclosure. In 

addition, for 6
*

10Ra  the formation of two 

secondary small cells near both bottom 

corners of the enclosure is detected. As the 

modified Rayleigh number and thus the 

buoyancy-driven circulation inside the 

enclosure increases, a progressive warping 

around the centers of rotation and a more and 

more pronounced compression of the 

isotherms toward the boundary surfaces of 

the enclosure do occur. The presence of the 

stagnation point is noticed at the midpoint of 

the bottom surface. The isotherm plots are 

also symmetrical about the vertical mid plane 

and concentrated towards the hot surface 

indicating the presence of a large temperature 

gradient there. The temperature gradient on 

the heated floor is maximum near the centre, 

tending to decrease toward both corners of 

the heat source surface. The temperature 

gradient is maximum near the hot wall, 

tending to decrease toward the cooled wall. 

As far as the isotherms are concerned, at 

3
*

10Ra (not represented) they are very close 

to the typical temperature distribution that 

corresponds to the limit of pure conduction. 

For lower 4
*

10Ra  the convection intensity 

in the enclosure is very weak as evident from 

the stream function values which are at least 

an order of magnitude smaller than those for 
*

Ra = 510  and 610 . Thus viscous forces are 

more dominant than the buoyancy forces at 

lower 
*

Ra  and diffusion is the principal mode 

of heat transfer. At higher 
*

Ra  when the 

intensity of convection increases 

significantly, the core of the circulating rolls 

moves up and the isotherm pattern changes 

significantly indicating that the convection is 

the dominating heat transfer mechanism in 
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the enclosure.  

     The effect upon the heat transfer rates is 

pointed out in Fig. 12, where the variation of 

average Nusselt number 
mNu  on the heat 

source surface versus the modified Rayleigh 

number 
*

Ra  = 310 - 610  and  aspect ratio A = 

2 are plotted. Besides the expected increase 

of the average Nusselt number on the heat 

source surface with the modified Rayleigh 

number 
*

Ra , the heat transfer rate from the 

heated floor is increased and the heat transfer 

rate from water is higher than that from air.    

     The distribution of local Nusselt number 

xNu  along the heated surface versus 

dimensionless horizontal coordinate x/H for 

aspect ratio of 2 and different modified 

Rayleigh numbers are shown in Fig. 13 and 

14 for air and water, respectively. The plots 

exhibit a symmetric pattern of heat transfer 

mechanism due to the symmetry of boundary 

conditions. It is to be noted that the local 

Nusselt number is decreased with increasing 

the dimensionless horizontal coordinate until 

half of the enclosure, after that it is increased 

with increasing the dimensionless horizontal 

coordinate. The local Nusselt number for 

water is higher than the local Nusselt 

numbers for air. The local Nusselt number is 

minimum at the mid-point of the heated 

surface. 

 

3.2 Effect of the aspect ratio 
     Figure 15 shows the effect of aspect 

ratio in the range 866.0  A  on average 

Nusselt numbers mNu  of the heat source 

surface relevant to 5
*

10Ra . The average 

Nusselt number  mNu  is increased with 

increasing aspect ratio until A=2 and then 

remains constant with further increase in 

aspect ratio. The average Nusselt number   

mNu  for water is higher than that for air. 

 

3. 3 Heat transfer correlations 
     Average Nusselt numbers of the heat 

source surface  mNu   is expressed as a 

function of both aspect ratio and modified 

Rayleigh number of enclosure through simple 

correlations in the following form: 

For air: 
25.0*

11.012.0 RaANum                               (16)  

For water: 

28.0*
12.014.0 RaANum                               (17) 

     The values of the coefficient and both 

exponents are evaluated by the Gauss- Seidel 

iteration method through a polynomial 

regression procedure. The correlation 

equations are obtained from the data in the 

following ranges: 

 866.0  A  

 6
*

3 1010  Ra  

Figures 16 and 17 represent the 

average Nusselt number calculated from 

correlations (16) and (17) versus the average 

Nusselt number obtained from the present 

simulation. It is shown from the figures that 

suggested equations predict the average 

Nusselt numbers mNu  for air and water with 

maximum deviation of ±15 %.  

 

4 Validation of the code 
     Furthermore, in order to validate the 

results of the numerical code for the present 

study, Fig. (18) illustrates the relationship 

between average Nusselt number mNu   and 

modified Rayleigh number 
*

Ra of the present 

study and the results of Elif [12] for 
*

Ra =10
3
, 

10
4
, 10

5
, 10

6
 for enclosure aspect ratio of 1, 

where the enclosure is filled with water.  

From the comparison between the two sets of 

results on, can observe that there is a fair 

agreement between them, with higher values 

of present results than these of Elif [12]. 
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5. CONCLUSIONS 
     Natural convection in rectangular 

enclosures has been studied numerically, for 

aspect ratios A between 0.66 and 8, and for 

values of modified Rayleigh number 
*

Ra  

between 310 - 610  for air and water. Buoyancy 

induced flow and heat transfer in a 

rectangular enclosure with localized heating 

through a uniform heat flux mounted at the 

bottom wall and uniform cold temperature at 

the top wall and adiabatic side walls has been 

numerically investigated. The main results 

obtained may be summarized as follows: 

(i) The heat transfer rate from the heated 

surface of the enclosure increases as the 

modified Rayleigh number increases; 

(ii) The heat transfer rate from heated 

enclosure increases as the aspect ratio 

increases until A=2 and then it has a constant 

value with further increase of aspect ratio; 

(iii) The local Nusselt numbers decreases 

with increasing dimensionless horizontal 

coordinate and reaches its minimum value at 

x/H=1 and then increases with further 

increase in x/H reaching its maximum value 

again at x/H=2 (symmetric distribution); 

 (iv) Dimensionless heat transfer correlations 

are obtained to calculate the average Nusselt 

number for air and water cases.  
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Fig. 2. Streamlines (on the top) and isotherms (on the bottom) of air at A=0.66 (L=0.66, and H=1). 
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Fig. 1. Sketch of problem geometry and 

coordinates. 
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     Fig. 4. Isotherms of air at A=1 (L=1, and H=1).
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       Fig. 5. Streamlines (on the left) and isotherms (on the right) of air at A=2 (L=2, and H=1). 
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Fig. 6. Streamlines (on the top) and isotherms (on the bottom) of air at A=8 (L=8, and H=1). 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

                          

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Streamlines (on the top) and isotherms (on the bottom) of water at A=0.66 (L=0.66, and H=1). 
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Fig. 8. Streamlines of water at A=1 (L=1, and H=1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Isotherms of water at A=1 (L=1, and H=1). 
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   Fig. 10. Streamlines (on the left) and isotherms (on the right) of water at A=2 (L=2, and H=1). 
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Fig. 11. Streamlines (on the top) and isotherms (on the bottom) of water at A=8 (L=8, and H=1).
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Fig. 12. Variation of mNu  versus 
*

Ra  for  

A = 2. 
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Fig. 13. Distributions of xNu  along the heat 

source surface versus x/H of air for A=2. 
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Fig. 14. Distributions of xNu  along the heat 

source surface versus x/H of water for A=2. 
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Fig. 15. Effect of aspect ratio A on mNu  for 

*

Ra = 510 . 
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Fig. 16. Comparison between 
mNu  predicted 

Eq. (16) and that derived from the present 

simulation for air filled enclosure. 
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Fig. 17. Comparison between mNu  predicted 

Eq. (17) and that derived from the present 

simulation for water filled enclosure. 
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