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ABSTRACT

The problem of determining the optimum dimen-
sions of all the gears in a multi-stage reduction
unit and the optimum reduction ratio of each
gear mesh has been investigated. One objective,
namely, the minimization of the equivalent mom-
ent of inertia for all the gears is considered
in this work. In addition to the design con-
straints according to the AGMA method, some’
coupling constraints have been included 1in
the formulation. The problem is formulated as

a standard mathematical programming problem,
and nonlinear programming technique is used to
solve the problem. The optimization is deter-
mined by geometrical programming (GP) combined
with linear programming (LP). This mathematical
programming approach can handle as many const-
raints as required, and it is an effective app-
roach, since for a problem with many constraints
the "degree of difficulty" is large and the
optimization procedure becomes more complex with
higher degrees of difficulty. A numerical example
is given to illustrate the effectiveness of the
GP-LP approach, and the results are compared
with those available in the literature.

INTRODUCTION

Servodrives provided with dc servomotors are

designed to follow velocity, acceleration, and
position command instantaneously and with great
accuracy. Many instruments and servomechanism
drives must also function intermittently, cr be
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capable of changing speed or starting and stopp-
ing quickly. As a result, their mechanical and
electrical characteristics are quite different
from those of other motors. Whereas ordinary
motors are specified by current, voltage, torque
and speed ratings, servomotors must be selected
on the basis of these factors plus the mechan-
ical time constant, rotor inertia, and heating
characteristics as well., Generally, servodrives
loads are of two types, 1inertial and frictional,
These two types are considered separately because
they affect motor operation in different ways.
An ineritial load must be accelerated and decc-
elerated, a frictional lcad tends to deccelerate
the motor by itself. However, detailed discuss-
ion on frictional load is beyond the sc0pe of
this investigation. ‘

The servomotor 1s chosen for its time constant,
including its rotor inertia, the inertia of all
gears 1in the reduction unit, and the load inertia
which to be accelerated. 1In servodrives thein-
ertia load 1s usually predetermined, and the
inertia of all gears in the reduction unit is
the only factor that must be considered to
minimize the mechanical time constant of the
servomotor that affect the dynamic of the servo-
drive. This means that, to minimize the mechan-
ical time constant of servodrive, the key design
factor is the inertia. Reducing the inertia of
all gears in the reduction unit of servodrive to

a minimum value results in a faster response and
lower drivemotion torque requirements.

Many previous studies [1-4] have dealt with the
design of reduction units for a minimum inertia
and or minimum weight. 1In these studies, the
pinions were considered identical and all gears
are taken with an equal thickness. Attempts
have also been made for a prespecified number of
meshes (two). However, the dimensions of the
gears (such as pitch diameter, number of teeth,
face width and diameteral pitch), and the design
constraints (such as strength equation, and
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fundamental wear equation of the gear tooth) have
not been taken in consideration. It is believed
that the techniques used in those investigations

and 2] would lead to a gear size larger than
the optimum one.

The proposed design synthesis presented here pin-
points the dimensions of all gears and the red-
uction ratio of each gear mesh that will give

a minimum moment of inertia of all gears in the
reduction unit. It requires only the formulat-
ion of the objective function from the geomet-
rical arrangement of the reduction unit and sel-
ection of a suitable design and side constraints.

The fact that the number of teeth and the diam-
etral pitch of any gear are integer and discrete
variables respectively can pose formidable prob
lems for the optimizer, because most of the avail-
able methods apply to the problems where all
variables are continuous. Probably the simplest
approach that can be used to solve such problem
is by rounding off. First treat the problem as
a problem of continuous variables, ignoring all
integer and discrete requirements, and solve it
by the available continuous methods. Next, round
of the optimal solution to the nearst integer
and discrete points [5] . For the sake of con-
versience, we shall consider first the case of
nonlinear continuous problem.

In this paper the optimum design variables for
each mesh in the reduction unit are determined
by geometrical programming (GP) combined with
linear programming (LP). This approach can handle
as many constraints as required.

An example is given to illustrate the advantage
using the GP-LP optimization technique.

PROBLEM FORMULATION

-Objective Function

The selection of minimization for the moment of
inertia of all gears in the reduction unit as a
_basic objective function is practical and also
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satisfies indirectly one or more of the following
conditions:

1, the total size of the reduction unit is mini-

~ mum;

2. the wight of all gears are kept to a minimumn;
and

3. the total cost of the reduction unit is then
minimized.

The basic objective function and the design con-
straints are based on the fqllowing:

a) All diameters used are pitch diameter.

- b) The surface durability factor of each gear
mesh 1s constant,

c) For simplicity, all gears are solid disks and
are made from material of the same density.
The fact that the gears usually are not solid
disks, but may contain holes and webbed cross-
sections, is taken into consideration after
determining the optimum parameters of the
reduction unit, This will not affect the com~
puted reduction gear relationship.

For any gear, the moment of inertia can be
written as:

4
_ _T.P.b.d
J | et 32 (l)

The inertia of any gear in the multi-stage reduc-
tion unit shown in .Fig. (l) will be calculated as
an equivalent inertia referred to the driving
pinion. For any pinion (J) this is given by

4
. b. . d’ .
J.=C3. £l (2)
P31 j-1
m2
k
k=1
.-_l'-
Where (%ﬂi mi) is the reduction ratio from the

driving pinion“"to pinion (j), and
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The equivalent moment of inertia for any gear (3)
is given by -
S 2 o _
J . = J_ .. m; ' 3

9] - - P3 J (3)
Using Eqns. (2) and (3), the total equivalent mom-
ent of inertia of all gears in the reduction unit
can be computed as;

2
b..d%.. (1 + m¢
j+9pj° | my)

n .
Je=C 2o -1 | (4)
=1 _ 2

Mg

k=1

Equation (4) can be rewritten as a function of the

discrete nature of the pinion (J) (number of teeth
N ., face width b_., and diamettal pitch Pj), the

nugger of gear mesh M. i.e.

) 4 2
“n b.. N . .(1 + m})
Jg=c%. LR b (5)
t 71opt
3T m
k=1

Now the objective function of this design synthe-
sis, namly Egn. (5), would be used to find the
design variables of each mesh in the reduction
unit (b., N ‘,Pj,mj) that will give the minimum
equivalgnt Rdmedt of inertia for all gears. In
order to accomplish this objective, the design
synthesis can be treated as an optimization problem
SO that the design and side constraints will be
stated below, are fulfield.

-Design and Side Constraints

Designing gears presents an extremely difficult
problem because it is primarily a trial and error
procedure. However, there are several methods
that can be used to develop the design procedure.
The AGMA method [6] may be used. It is particul-
arly useful because ‘it applies correction factors
to the original design equations that compensate
for some of erroneous assumptions made in the der-
ivation as well as for important factors not orig-
inally included. Furthermore, since most of the
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factors are obtained empirically. The AGMA equat-
ions can be kept up to date by merely changing the
values of the factori as more information about
gear behavior is obtained.

Gears generally fail because the actual loads app-
lied to the teeth are greater than the allowable
loads based upon either the beam strength of the
tooth (tooth fracture) or its wear strength (sur-
face failure). The final strength equation to be
used is the AGMA modification of the lewis equat-
ion. The strength equation for any pinion is
written as follows [6]:
szt'P'KO’KS'Kn (6)
t b . K, - G
It is necessary to compare the calculated stress
at the root of tooth with the maximum allowable
design stress. The AGMA equation for the maximum

allowable design stress (Sad) is

S . K5
Sag = Kat Kl (7)
t * R
‘;‘*é sum up the AGMA method for designing spur gears
for strength, the calculated stress of equation
. {6) must be less than or equal to the maximum
allowable design stress as determined by equation

(?) fy i.E.,

stad . | (8)

- Notmalizing inequality (8) with respect to the
face width the number of teeth, diametral pitch
and the reduction ratio from the driving pinion
to the jth pinion, the first design constraint
is expressed.by

2 3-1
2 T ,.P: .
N < Q (9)
J PJ S,p - Ky - K, . G
Where (Q) is equal to (%2 v )
K. oK. oK, o K_.K.'"*
o S 1 t°"R
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Having discussed the first of the general causes
of tooth failure, it is now appropriate to con-
sider the second category, namely; surface des-
truction. The fundamental wear equation for any
pinion 1s given by:

6’ e zt . CE - Cg .ICm - Cg (10)
c p pO v

The AGMA specifies that the calculated stress
number must be less than or equal to an allowable
contact stress number (S_ ) which has been modif-
ied by several correctioﬁcfactors, i.e.,

6 <’Ssc( 21 : EH ) (11)
= T * "R

Normalizing inequality (l1l1l) with respect to the
face width, the number of teeth, diametrial pitch,
and the reduction ratio from the driving pinion
to the jth pinion, the second design constraints
can be expressed as:

j=1
2T . P2, T m
Py k=1 K
5 <U (12)
b- 4 N o .
] pj

Sac'cl‘CH 2 Cv't
Where (U) equals to ' . o
CT'CR’Cp CO.CS.Cm.Cf
It is obvious that, the values of the factors (Kl,
Kv' G, Ko' KS, Kn’ Kt, KR' Sat’ Cl’ CH' CT’ CR’
Cp'ACV' I, Co' Cs’ Cm’ Cf and Sac) are chosen,
baded either on the values suggested by the AGMA
or upon the personal experience the desiqner.

At this i tage of the problem formulation, the
optimum design of a gear train consists of the
objective function the design constraints (9)
and (12). However, at this point we might not
be certain as to what other constraints should
be included in the formulation of the optimizat-
ion problem to properly complete tying the optim-
_ization problem together mathematically. The
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basic key for completion of the formulation of
the optimization problem lies in a recognization
of the side constraints which we consider to be
significant for the problem. Hence in review of
our machine setting including manufacturing and
Practical considerations, suppose we recognize
the significance of the following additional side
constrailnts:

"oi 2 Mnin (13),
b. . P.

"'_—l é- ﬁ (14)
N . ——

pJ .

ﬁ. |
(m -am) 15
sj=l mjg (m +am) (15)

SOLUTION PROCEDURE

The minimum inertia design problem formulated in
‘the previous section can be conver;ed to the sta-
ndard form of a nonlinear mathematical programm-
ing problem without much difficu}ty. This sect-
ion gives the method of solution.

As the objective function, Egn. (5) and the con-
straints, Egns. (9, 12, 13, 14 and 15), are pos-
ynomials in bj’ Pj' ij and m. the problem 1is

a geometric programming in nature. It is usually
formulated as follows[7]):

«Primal Program:

TN\

o U
N

</

T eee

'U'UI
(SIS fe

. < Pn g
Find the design vector X = N




. B

which minimizes the objective functlon Egn. (5)

and satisfies the constraints

-1 2 -1 -1 i-d
2T Y Pl Py ) .
p1 @ 0P Mg I me sl
-1 2 -1 -2 1
270 . Ut . p° ., © T
pl g+ By e Ny UM
A k=1
-1 -1
. b. . P. . N P
P 3 j pJ =
N . . N1 =
min o3
n
(m-+am) T m =
=1
o -1 <.
@1-am) T m =
j=1

The quantity (No + N,/ ) - (N_ + 1)

(16)

(17)

(18)
(19)

(20)

(20a)

is termed as

a degree of<difficul§y in t¥e geometric programm-

;ng Since No =(2n), N_ = (4n + 2)

and N =(4n),

this problem has (2n+l)" degree of diﬁficxlty,i.eq
the degree of difficulty equals to twice the num-

ber of meshes (n) plus one,

=»Dual Program:

The dual problem can be stated as follows [7]:

Find W
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SO as to maximize

W .
2n C .\ O] (4n+2) W
viw) = T W—‘ll—) [T (C ) ki (21)
j=1 oJ k=1

subject to:
the normality constraints

2n

2 Moy 71 (22)

i

the orthogonality constraints

2n (4n+2)

; 35i5 * Woj * 5; aiy1 Wy =0 (23)
J=1 k=1
and the nonnegativity constraints
wOj ) 0 ] (24)
W 2 0

i = (1, 2, .... 4n)

Maximizing Eqn. (21) is equivalent to minimizing

2n (4n+2)
ln V(W)= - Z . woj‘ 1n coj+ Z wkl'lnckl +
= =

2n ~
Y Wyt 1n woj] (25)

3=1

subject to (22), (23) and (24).
The problem, as rewritten by Egns. (25), (22),
(23) and (24) can be solved by making a piece
wise linear approximation[ﬁ] for the last term
in Egn. (25), i.e. for the function
2n
f = . W_.. ln W_..
j=1 o] o]
Hence, the entire linear dual formulation can be
solved efficiently using the standard simplex



Once the optimum value of the dual function and
the optimum values fo the dual variables (wo.amd
wkl) are obtained, the next step 1s to detegmine
the optimum values of the design variables bj'
Pj, N ; and mj . This can be achieved by solv-
ing simultaneously the equations:

W . = jgh term in the objective function (26)
oj X*
o
j = l’ 2 '} ® @ 0 6 5 s 0 0 0 2n v
1 = kth constraint. (27)
K = l’ 2' > & 00 0 0 06 0 0 00 (4n+2)

NUMERICAL EXAMPLE

A numerical example is considered to illustrate
the effectiveness of the optimization procedure
developed.

The following numerical data is used in the prob-
lem: ;

m=8, m=0.5, n=3, Tpl=l80 lb.in,Sat=l9000PSi,

Ky, =Ky = K =C_= C.=C,=C_=Cp=1,K=C =1.2,
K, = C, = 1.25, K_= 1.6, K, = C =0.62, G=0.32,
I =0.15, Cp = 1.15, C, = 2300, S__ =85000, =1.%
N =14, and = 0.28 1b/in>. |

The optimization problem can be stated as follows:

fb \

Find X
-91=~



as to minimize

F(x)= 0,027 bl.PI4.N;l+bl.P
m12+b2.P;4.N;2.m12 mg
64.b3.P;4.N;3. mI4.m£ .

Subject to

0.2268 P2 . bI°. N;i

0.2268 P . b". Ngé. m,

0.2268 P2 . bl Ngﬁ. m, .m,

5.616 P> . bll. Ngi

5.616 P2 . byl N;§ . my

5.616 P> . bIl. N§3 . my.m

21

i nn

0.833 By . by . N7J

14 N;i

14 Ngé

14 NE%

7.5 mIl . m;l m;l

0.1176 m; . m, . m,
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The dual problem can be stated as follows:
\
(Wqy

02

£ =

=
o o
NS

— O O
H O

= VS A
N

Find W

s ¥ ¥ ¥ ¥ E T =
wn
—

i
A

=

=
O 3 o
~ o

=

Wi01
Wlll

l2l

3131
W141 ]

So as to maximize
, W W W W
_Jo.027) °Y [0.027) ©2 f0.027\°3 fa.027\ °*
V(W)= W \'W | W "\ W
ol 02 o3 o4

W W
05 o6 (W, W, +W, )
(0.027) .(1.728) 0.2268 1177217731

w05 woG
(W +W_..) (W +W..)
5.616 41 Sl 61 . 0.833 7l 81 91 .
(W + W + W ) (W ) (W )
14 101 111 121 . 7.5 131 .0.1176 141
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Subject to

W + W + W

01 ¥ Woo * Wo3 t Woy * Wog * Wyg
Wo1 T Wop = Wy — Wy * Wy =
Woz + Woq = Wpy = Wy * Wgy =
Wos + Wgg = W3y = Wgy *+ Wy =
-4W01 -4 w02 + 2 wll + 2 qu + W7l =
AWy, =4 Wy, + 2 Wy + 2 Wg + Wg =
—4W05 -4 W06 + 2 W31 + 2 WGl + ng =
AWpy) + 4 Wpy = Wy =2 Wyy = Wyy =Wy °
NGy + 4 Wy = Woy =2 Wey = Wy = Wiy 3
ZWO2 - 2 wo3 - 2 WO4 - 2 w05— 4 w06+ w21+
Wyp * Wgy + Wgy = Wygp * Wy =
2W, = 2Wgg —AWgg T Wyt Wty T
W31 t Wig =
Wi 2 O T =1, 2, eeuu, 6
Wkl = 0 K =1, 2, «¢..,14

1)

0 f(a4)

Maximizing (E3) is equivalent to minimizing

in V(W){é.sl(w01+w02+w03+w04+w05)—

0.546 W +l.48(wll+w21+w3l)—

a6

1.725(W41+W5'l

+w61)+o.182(w71+w31+

Wgp)=2.639(Wy o W) +W)5y) =2.015(Wy 5y )

2.14 (W W Iln W

01 ™02
+W

1410 Wop-

03 1n Woa*tWy, 1n Wi,

Wog 1n Wog |

W 05

In W

1n W05+

02

+

(ES)



The prgblem can be solved by linear programming
by making a piecewise linear approximation to
Fhe each tgrms,(w j.ln wo.), in Egn. (ES5). This
1s. .accomplished by repla&ing each curve,

(Bj = Woj.ln Woj)' by a broken line, B=B (A).

Linear_pgogramming can now be used to minimize
(ES) subjeqt to (E4), if (ES) 1is replaced by
the approximation

—-3.61 W01+ 3.61 W02+3.61 W03+3.61 Woat

3.61 WOS' 0.546 w06+l.48 wll+l.48 Wost+

21
1048 - ° - -
Wyp- 1.725 W =1.7250 1,725 W, +
0.182 W + 0. - -
0.0z 1 182 Wy, + 0.182 Wy -2639 W o,
i Wyp,-2-639 W), =2.015 Wy +2.14 Wy, +
(All.ln SERESTE ln A, t AlB' ln Aj4) +
(Azl' 1n A21 + A22. 1n A22 + A23.ln A23)+
(A3l. 1n A31 + A32 1n A32 + A33. ln_ A33)+
(A4l. 1n A4l + A42 . 1n A42 + A43 .1n A43) +
(A51. 1n ASl + A52.ln A52+ A53. 1ln A53) +
(Aél' 1n AGl + A62.1n A62 +A63. 1n A63).
(E6)
Which is also subject to
\
~ Wgy + Byy Wopy * Ayo Wopothi3W03 =0
- W + AW B
02 21 Y021 + Ay, Wy,otAssW, 55 =0
- Wgq +* Rgy Wogp + Agp Wogot BygWgay =0
- Wog t Ay Woup + By Wogot Bysfgyy =0
- Wog + Agy Wygy + Agy Wogot Agyfggy = 0
- Woe * Agy Wogy — AgoWgeot Pg3 Woez =0 J(E7)
Wop + Wo1o T Wo33 =1
Woy + Wopp + Wppy =1
Wo31t Wo32 T Wo33 =
Wog1® Wog2 * Wog3 =1
Wog t Woso t Wos3 7
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Equation (E6) is minimized, subject to Eqns. (E4)
and (E7), by a sequence of LP problems using
linear approximations to each term of the form
(A. 1n A), 1.e., first compute B =Al.ln Al at

A, = 0, 0.5, and 1 and use a grid refinement
téchnique to set up each new LP problem. After
each LP approximation has been solved by using
the simplex algorithm, the grid size is halved
using those new values which re adjacent to the
current value of A.. he procedure 1is depicted
in Fig. (2). Assume that the previous grid points
for a given variable were a, ¢, and e and the
corresponding solution denoted by x fell in the
intervial ¢ to d. Then the new grid points for
the new trial would be ¢, d and e. If the next
solution fall 1in the 1nterval from 4 to e, the
new grid points would be d, (d+e)/2 and e; and
so forth.

It is clear that the GP-LP formulation 1is larger
than the original GP dual problem, but the effic-
iency and effectiveness of the simplex algorithm
in determining the optimum solution more than
makes up for the increased problem size, particu-
. lary with the availability and the capacity of
modern computers.

The bptimal solution of the GP-LP programming
problem is given in Table 1. The previous exam-
ple. was solved using the available date in ref.DJ,
i.e., my = 1.65 m, = 1.8 and m., = 2.66, The
optimal solution listed in Tablé 2. It should be
pointed out that the analytical study in ref{]ﬂ
only provides a method for determining the optim-
um reduction ratio for each mesh for restrictive
case of idrntical pinions. Furthermore, the pro-
blem was formulated with no design and side cons~=

traints.
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The results of which are listed in Tables 1 and?2
indicated that the suggested approach results in
a reduction of inertia byla‘factor of 2.25 over
the case of making the pinions identical and of
equal thickness [1] . It should be pointed out that
the variables Npj and P, must be integer and dis-
crete values, respectively.

A comparlson between the suggested method and the
method in ref. [2] can not be made, because this

method 1s valid only for restrictive case of two
meshes.

CONCLUSIONS

The main objective of this paper was to determine
the optimum diemensions of all the gears in a
multi-stage reduction unit and the optimum reduc-
tion ratio of each gear mesh that will give
minimum moment of inertia of all gears 1in the
reduction unit.

optimum solution was determined using geometric
programmlng which is considered as an effective
programming technique for nonlinear constrnadants
and higher order objective functions. This tec-
hnique, when combined with linear programming 1in
a sequential mode, can handle as many constraints
as required. The effectiveness of the geometri-
cal programming method is well demonstrated by
the resultlng optimum three- -stage reduction unit
solu don, which involved a nonlinear objective
function with twelve design variables and also
accounted for 14 constriants-3 for designing spure
gears for strength, 3 for contact stress, 3 for
face width factor, 3 for minimum number of teeth
and 2 for permissible error in the overall reduc-
tionratio. The advantage of the GP approach can
also be demonstrated by the resulting inertia dis-
tribution which can be given by the values of the
dual variables used in the GP solution method.
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NOMENCLATURE

aikl Exponent of the ith variable in the Kth constraint,

aoi’ Exponent of the ith variable in the- jth term of the

J objective function,

bj Face width of the gear in the jth mesh, inch,

C Constant =€ /32 lb/in3.

Cg Surface condition factor.

CH Hardness ratio.

C Constant of the Kth constraint,

K1l

CL Life factor.

c Load distribution factor,

CZ Overload factor.

Coj Constant of the jth term in the objective function,

C Coefficient depending upon the elastic properties of

P the material.

CR Factor of safty.

CS Size factor.
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Temperature factor,

Dynamic factor

Pitch diameter of the jth gear inch,
Pitch diameter of the jth pinion inch,
Transmitted load on the jth pinion 1b.
Geometry factor,

[N

[

C. = oo @)
~ O 09 J)'-a

I Geometry factor., 2
Jgj Moment of inertia of the jth gear 1lb.in .,
Jpj Moment of inertia of the jth pinion 1lb.in",
Je Total equivalent moment of inertia of all gears in
the reduction unit 1b.in2.
KL Life factor.
Kn Load distribution factor,.
Ko Overload correction factor.
K Reliability factor,.
R .
KS Size correction factor.
Kt Temperature factor.
Kv Dynamic factor.
m Overall reduction ratio,
mj_ Reduction ratio of the jth mesh.
Ngj Number of teeth in the jth gear.
NK Number of terms in the constraints.
N° Number of terms in the objective function.
ij Number of teeth in the jth pinion.
Nv Number of design variables,
n Number of meshes,
Sad Maximum allowable stress of material.
S Allowable stress of material. rsi.
at
Tpl Applied torque on the driving pinion. 1b, inch,
V(W) Dual function.
wkl Dual variable corresponding to the kth constraint.
woj Dual variable corresponding to the jth term in,

the objective function.

X Design vector.
X* Optimum value of the dual function, i.e,, the

minimum value of the objective function,
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™

FAce width facctor.

am Permissible error. 3
r Material density 1b/in”.
6% Calculated contact stress number,
at Calculated stress at the most of the toothfsi.
Table (1)
Design : Stage
Variables 1 2 3
Pinion Gear |Pinion GearjPinion Gear
Pitch diameter 2 2.57 2 4,714 2.83 7.1%
Diametral pitch 7 7 6
Number of teeth 14 18 14 33 17 43
Face width 1.45 1.82 2.2
Reduction ratio 1.285 2,357 2,529

- Resultant overall reduction ratio (m) = 7.659
- Equivalent moment of inertia of the gears (Jt)=7.867

1b.1in2.
- Ratio of inertia of gear train to inertia of driving
pinion Jt/Jpl 12,55,
.Table (2)
Design Stage
variables 1 2 3
Pinion Gear |Pinion Cear|{Pinion Gear
Pitch diameter 2.5 4,13 2.5 4.5 2,5 6,66
(inch)
Diametral pitch 6 6 6
{ Number of teeth 15 25 | @) 27 15 40
Face width (inch) 2.5 2.5 2.5
Reduction ratio 1.65 1.8 2,66
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- Resultant overall reduction ratio (m) = 7.9.
- Equivalent moment of inertia of the gears (Jc)=17'69

lb.inz.

- Ratio of inertia of gears train to inertia of driving
pinion (Jt/Jpl) =

6.21.°
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