Menoufia University

Faculty of Engineering, Shebin El-Kom, **Basic Engineering science Department**

First semester Examination, 2016-2017

Date of Exam: 4/1/2017

Subject: Mathematical Modeling

Code: BES 510

Year: Postgraduate students

Time Allowed: 3 hours Total Marks: 100 marks

Answer the following questions

1) Define each of the following expressions:

Autonomous dynamical system - Difference equation- Lipschitz concept.

2) Derive the equation that minimizes the sum of the squared deviations between a set of data points as in the following table and the quadratic model.

x	0.1	0.2	0.3	0.4	0.5
y	0.06	0.12	0.36	0.65	0.95

- 3) Solve the difference equation, $x_{n+2} 2x_{n+1} + 2x_n = 0$, with initial conditions $x_1 = 0$ and $x_2 = 1$.
- 4) Classify the fixed point for the following systems and then draw the phase-portrait for each system.

$$\begin{array}{ll} \text{(i)} & \begin{cases} \dot{x}_1 = x_1 + x_2 \\ \dot{x}_2 = 4x_1 - 2x_2 \end{cases} \\ & \text{(ii)} \begin{cases} \dot{x}_1 = x_1 - 2x_2 \\ \dot{x}_2 = 2x_1 - x_2 \end{cases} \end{array}$$

5) Find the equilibrium point for the following systems then determine the stability each system.

(i)
$$\begin{cases} \dot{x} = \frac{a}{b}(x)(b-x) \\ x(0) = x_o \end{cases}$$
 with $a > 0$ and $b > 0$ (logistic model)
(ii)
$$\begin{cases} \dot{x} = ax \\ x(0) = x_o \end{cases}$$
 with $a > 0$ (Exponential grawth model)

(ii)
$$\begin{cases} \dot{x} = ax \\ x(0) = x_o \end{cases}$$
 with $a > 0$ (Exponential grawth model)

- 6) Show that the function f(x) = 2x + 3, $\forall x \in R$ is Lipschitz continuous in R and the function $f(x) = x^{\frac{2}{3}}$, $\forall x \in (0, +\infty)$ is not Lipschitz continuous on $(0, +\infty)$.
- 7) Write the following equation, $\ddot{y} + (1 + t^2)\dot{y} + 2ty = 0$, as autonomous system and then find the Jacobian matrix for the following autonomous systems:

(i)
$$\begin{cases} \dot{x}_1 = (x_1)^2 (x_1 - x_2)^3 \\ \dot{x}_2 = (x_2)^3 (x_1 - x_2)^2 \end{cases}$$
 (ii)
$$\begin{cases} \dot{x}_1 = \cos x_1 \sin x_2 \\ \dot{x}_2 = \cos x_2 \sin x_1 \end{cases}$$

8) A sewage treatment plant processes raw sewage to produce usable fertilizer and clean water by removing all other contaminants. The process is such that each hour 12% of remaining contaminants in a processing tank are removed. What percentage of the sewage would remain after 1 day? How long would it take to lower the amount of sewage by half? How long until the level of sewage is down to 10% of the original level?