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Stratospheric Ozone Forecasting By Multiple Linear Regression Models
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Abstract: This paper represents a multiple linear- regression modeling (LRM) approach in order to predict
ozone concentration over Cairo as a function of meteorological parameters (i.e., reflectivity, solar ultraviolet
intensity, zenith angle) and pollutants indexes (i.c., acrosel index, and sulfur oxides index). Data for this paper
were collected over a period of 25 years. When different combinations of data sets were examined from the test
point of view, it was found that the LRM-A] model provides the most reasonable results compared to other
lagged models {i.e.,, LRM, LRM-SOI).
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Ozone {O;) is produced due to the complex photochemical
reaction between nitrogen oxide radicals (NG;) and non
methane hydrocarbons and other volatile organic
compounds (VOC) in the vicinity of UV solar

1. Introduction

Interest in ozone stems from the fact that such
absorption of solar radiation is important in

determining not only the thermal structure of the
stratosphere, but also the ecological framework for life
on the earth's surface [1]. The health of humans,
animals, and plants can be affected by increasing
ultraviolet radiations, where the ozone decrease is one
of the most significant of its impacts [2].

Observations of the total integrated column ozone
based on ultraviolet absorption began in the first few
decades of the twentieth century [3-5]. Systematic
measurements of this type have revealed that the total
ozone abundances over many regions of the globe
have decreased markedly since about 1980. Indeed, the
depletion of the global ozone layer has emerged as one
of the major global scientific and environmental issues
of the twentieth century. Downward trends are cvident
in the time series of spatially or time-averaged spring
column ozone observations [6-]1].

irradiance; also other meteorological parameters can
effectively affect ozone concentration [12].

Stratospheric ozone is considered good for humans and
other life forms because it absorbs ultraviolet UV-B
radiation from the Sun (see Figure I). If not absorbed,
UV-B would reach Earth’s surface in amounts that are
harmful to a variety of life forms. In humans,
increased exposure to UV-B increases the risk of skin
cancer, delayed tanning, cataracts, lens capsule
deformation, ocular melanoma, sunbumn, and a
suppressed immune system [13-15]. Because of its
capability to absorb the incoming radiation, the
stratospheric ozone is a major source of stratospheric
heating, which further heats the troposphere [16].
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Fig.1 The ozone layer resides in the stratosphere and surrounds the
entire Earth. UV-B radiation (280 to 315 nanometer (nm)
wavelength) from the Sun is partially absorbed in this layer. Asa
result, the amount of UV-B reaching Earth’s surface is greatly
reduced. UV-A (315- to 400-nm wavelength) and other solar
radiation are not strongly absorbed by the ozone layer.

In a more matheinatical language, the statistical time
series analysis approach in forecasting the atmospheric
and environment pollution has been proved viable by a
number of researchers. Multiple linear regression
models have been widely used for ozone forecasting,
and well specified regressions can provide reasonable
results [12,17]. Not only are there numerous direct
links between weather conditions and the ozone
production factors mentioned above, but there are also
equally important feedbacks among the many
variables. The net result is a highly complex system of
ozone formation mechanisms that displays the
compounded effects of multiple chemical and
meteorologically related nonlinearities [18-20].

In most of past works, MLR models have been
developed with other meteorological variables as
predictors. In none of the MLR models of ozone
concentration, pollution indexes have been used as
predictor instead of pollutants concentrations. Since all
other meteorological variables have their own chaotic
characteristics and complexities, their inclusion to the
input set would incorporate more complexity in the
forecasting [21-24). The present approach viewed the
prediction problem from a different point of view
while performance of MLR models has been compared
with each other.

y and Ahmed A, Al-Sarawy
2. Data

We present here the development of a muitiple linear
regression model that can be used fo estimate
stratospheric ozone concentration on the basis of
erythemal UV irradiance, aerosol index, solar zenith
angle, sulfur oxides index, and reflectivity [25,26].
These data was obtained from TOMS’ website {27].
The TOMS’ data have a daily global coverage over 1°
*+ 1.25° (latitude by longitude) grids. The total relative
uncertainty in the radiance calibration is estimated to
be <3% (though somewhat higher at high latitudes).
For more delailed descriptions of the different sources
of uncertainty the reader is referred to [28]. But, one of
the main shortcomings in using satellite data is that,
the TOMS instruments provide one measurement per
day near local noon.

The seasonal variation in the columnar ozone time
series from 1979 to 2005 is shown in fig.2, and in a
qualitative sense, it shows downward trends of about
49% in winter/spring and about 4.8% in
summer/autumn. The illustrated dala summarize the
average values of the corresponding records for Cairo
(30°4'N, 31°16'E).

UV radiation is the most important factor affecting
ozone concentration. Fig.3, shows the downward
seasonal variation in Erthymal-UV irradiance time
series in (mW/m?) from 1999 to 2005. The results
reveal a decrease in UV data series over time despite
significant decrease in the columnar ozone. It is not
surprising that the UV irradiance does not follow the
ozone trend, because the sensitivity of the TUVR
radiometer peaks at long wavelength where ozone does
not absorb. Other factors (e.g. aerosol, air pollution)
may cause this decrease in UV [26]. A quantity known
as aerosol index is a logical choice to use as a
parameter for indicating UV attenuation due to
scattering and absorbing processes. The results of
Hsuet al. [29], and Herman et al. [30] have
demonstrated the feasibility of using this index to
characterize the temporal and spatial distributions of
the tropospheric aerosols. Under most conditions, the
aerosol index is positive for absorbing aerosols and
negative for non-absorbing aerosols. UV absorbing
aerosols include smoke produced by biomass burning,
black carbon from urban activities, mineral dust, sea
salt particles and ash. Non-absorbing aerosols are
primarily sulphate aerosols. Aerosol index (Al) is
defined by the following equation:
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Fig.2 The seasonal variation in the columnar ozone time series in DU from 1979 to 2005
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Where the subscript "meas" is the backscatter radiance
measured by total ozone mapping spectrometer at a
given wavelength, and the subscript "calc" indicates
the radiance calculated using a radiative transfer model
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for a pure Rayleigh atmosphere. Actually, the
scattering and the absorbing processes affect the UV
budget in away depending on aerosol type and surface
albedo [31]. For this case the effect of surface albedo
can be considered insignificant, since the areas where
the measurements are performed have almost the same
albedo through the year. Figd4 shows the
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Fig-3 The seasonal variation in Erthymai-UV irrediance time series in (mW/m®?) from 1999 10 2005



P. 4

Fig.4 The frequency of aerosol index for the period 1979-2005

frequency diagram of the TOMS aerosol index for the
period 1979-2005.

The next relevant factor influencing ozone
concentration is the solar zenith angle (SZA}. The SZA
is one of the most important factor, because it
determines the path length of UV radiations through
the atmospheric ozone and other absorbers [32,33].
The larger SZA means that the UV radiation has to
travel a longer optical path length through the
atmosphere; hence, less amount of UV radiation will
reach the ozone layer, which leads to less formation of
ozone particles. Fig.5 shows the relation between SZA
and ozone concentration.

70
1

60

50+

s

304

-wJ

20

104

04
50 260 2R . A0

Fig.5 The relation between SZA and ozone concentration,
less ozone concentrations DU for larger SZA

The solar irradiance reflected up to a spacecraft from
the surface of the earth can be used to calculate
reflectivity. Reflectivity calculated for specific
bandwidths is needed for the calculation of total
column ozone from the TOMS and OMI instruments.
Reflected radiation can come from two surfaces, the
ground, and the tops of clouds. Reflectivity is
determined from the measurements at 380 nm, or 360
nm in the case of Earth Probe satellite. Clouds are
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clearly defined and recognizable in images produced
using TOMS and OMI reflectivity data.

Sulfur occurs in Earth’s atmosphere as a variety of
compounds, in both gaseous and aerosol forms, and
has a range of natural and anthropogenic sources. .
Emissions of SO, and other sulfur species have been
the subject of particular attention, given the impact that
sulfur may have on the Earth’s radiative budget,
through the direct scattering of sumlight, and also
indirectly via modification of cloud albedoes and
lifetimes, which impacts on the stratospheric ozone
formation [34]. Most sulfur enters the atmosphere as
gaseous sulfur dioxide (SO;), a dangerous air
pollutant. Sulfur dioxide has a lifetime in the
atmosphere of about a day, before being deposited to
the surface or oxidized to sulfate (SO,7) aerosol
[35]. SO, emissions can be assessed based on the
sulfur oxides index "SOI" which is an open-end scale,
that relates directly to the amount of SO, produced
[36].

3. Methods

The intricacies of ozone formation make day-to-day
operationat prediction of ozone quite difficult. One of
the best ways to capture these complex interactions is
through the use of photochemical models used mainly
for research and planning (e.g., the Urban Airshed
Model) [12]). But such models are unsuitable in many
operational settings because they require significant
computer and staffing commitments, as well as many
complex chemical and meteorological inputs
{precursor concentrations, mesoscale meteorological
measurements, etc.). Thus, while such models are
theoretically  sophisticated and desirable for
forecasting, they are not practical choices in many
locations. The most common alternative is to employ a
multivariate statistical approach, which is widely used
in operational ozone forecasting and research oriented
statistical modeling [37-40]. Multiple {(multivariate)
linear regression is the most popular of these
techniques, and it has the general form:

Yi=by+ b X i+ X+ ...+ by X, +1 )

Where, for a set of i successive observations, the
predictand variable Y is a linear combination of an
offset by, a set of k predictor variables X with
matching b coefficients, and a residual error. When the
regression equation is used in predictive mode, (the
difference between actual and predicted values not
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accounted for by the model) is omitted because its
expected value is zero. Note that regression models are
inherently Hlnear, although curvilinear relationships
can be incorporated via polynomial terms in the
regression, and known relationships can be pre-
specified by transforming a nonlinear predictor
variable into a more linear form (e.g., by taking a
logarithm) before using it in the model.

Regression models of ozone pollution typically
incorporate from one or two input variables [24] to as
many as 313 variables (reflecting a range of weather
data from several atmospheric levels that are
potentially correlated with ozone concentrations) [37]
A stepwise multiple regression procedure is commonly
used to produce a parsimonious model that maximizes
accuracy with an optimally reduced number of
predictor variables. In most locations, temperature is
the meteorological variable most highly correlated
with ozone, although wind speed, variables related to
UV, and atmospheric moisture are sometimes included
in regression models. In this paper, five variables are
used to reflect the most important effect which are
(reflectivity, ultraviolet solar intensity, solar zenith
angle, aerosol index, and sulfur oxides index).

Because daily maximum ozone concentrations are
partially dependent on the previous day’s
concentrations, ozone data display strong serial
correlation. In contrast, regression models assume that
observations are statistically independent events. To
avoid this weakness while still incorporating the
importance of persistence, some investigators have
used a lagged ozone concentration (typically a value
from the previous day) as an additional predictor
variable in the model [12,24,37]. If the regression is
performed in an explanatory mode (for interpretation
of coefficients or significance testing), then this
strategy is statistically somewhat awkward, because
the inclusion of serially correlated ozone data does not
necessarily aid understanding of weather-ozone
relationships. In contrast, the inclusion of lagged data
in regression modeling is desirable when used in a
predictive mode, frequently improving the accuracy of
predictions.

Four multiple linear regression models are performed
to compare with each other for cach season. The first
mode! is the unlagged model (URM), which doesn't
depend on the previous day’s concentration of ozone, it
depends only on reflectivity, ultraviolet solar intensity,
solar zenith angle, aerosol index, and sulfur oxides
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index. The other models depend on the previous day's
ozone concentration. The second model, implemented
by variables reflectivity, ultraviolet solar intensity,
solar zenith angle, aerosol index, and sulfur oxides
index, concluding the previous day's ozone
concentration (LRM). The third model, implemented
by variables reflectivity, ultraviolet solar intensity,
solar zenith angle, and aerosol index, as the third
model after eliminating the sulfur oxide index from the
model (LRM-SOI). The fourth model, implemented by
variables reflectivity, ultraviolet solar intensity, solar
zenith angle, aerosol index, and sulfur oxides index
concluding the previous day's ozone concentration, but
after eliminating negative values from the aerosol
index (LRM-AI).

4. Results

In our work, multiple regression modeling was
performed, without transforming any input variables or
employing a stepwise variable-selection procedure.
The latter was done to maximize explained variance,
coefficient of determination (R?), and to keep the
results in comparable form, thereby offsetting the
minor loss in parsimony caused by having all variables
in the regression. Regressions were run on the
MINITAB® software package.

The reliability of the model has been assessed using
statistical measures, such as coefficient of
determination (R%), mean bias error (MBE), root mean
square error (RMSE), mean absotute error (MAE), and
mean absolute percentage error (MAPE). High values
of R?, and Low values of MBE, RMSE, MAE and
MAPE indicate better correlation [41-43].

The coefficient of determination (R?), used to illustrate
the relationship between observed and estimated
values, (which account for variability explained by the
given model) was provided for the whole period (see
table 1). Fig. 6 shows the scatter plots of the measured
and estimated datasets. According to Fig. 6 the results
obtained by the proposed model are generally
satisfactory and shows a good correlation between
observed and estimated values. In (table 1), an analysis
of the results at the individual season's shows that the
season's has little impact on the value of R?, for lagged
models it varies between 0.567 to 0.699, (about 0.13
variation), and for unlagged model it varies between
0.155 to 0.541, (about 0.39 variation), thus indicating
the goodness of the fitting for lagged models over
unlagged model.
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Table 1: R* compared between models and seasons
RI
URM LRM LRM-S01 | LRM-Al
Winter 0315 0.643 0.652 0.655
Spring 0.541 0.699 0.691 0.695
Summer 0.367 0.659 0.644 0.657
Autumn 0.155 0.567 0.572 0.580

The MBE (mean bias error) is technically a difference,
but it is included here because it succinctly
summarizes the average over- or under-prediction of
ozone in each model. The MBE values are small, and
the sizes of the standard errors indicate no discernible
differences between models. Comparing models, all
models tend to slightly over-predict. These subtle
variations in MBE may be attributable to slight
differences in information between the training data set
and the independent test data set for each city, rather
than any overall structural tendency in the models.

MBE varies between 0.7% (in the first quarter of the
year "winter") and 0.03% (in the Third quarter of the
year "summer"), as shown in (table 2). It is clear that
the best MBE (lowest values) appears in fourth model
(LRM-AI) of all quarters, and the worse MBE (highest
values) appears in the first model (URM) of all
quarters.

Table 2 MBE implics the over-prediction of ozone in all models

MBE %
URM LRM LRM-SOI | LRM-Al
Winter 0.733 0.373 0.367 0.365
Spring 0.189 0.123 0.120 0.118
Sunumer 0.060 0.032 0.032 0.031
Autumn 0.29} 0.147 0.131 0.128

The mean absolute error (MAE) is simply the average
absolute value of all such deviations, without
exponentiation; the root mean square error (RMSE) is
the square root of the mean of all squared residuals
(the root is taken to return the result to the original
metric which, in this case, is DU of ozone). MAE has
the benefit of being fairly intuitive to interpret, and it is
not sensitive to outliers, but RMSE is widely used and
is more amenable to additional statistical analyses.

In (table.3), it indicates that MAE ranges between 4
DU (for fourth model (LRM-AI) in summer) and 19.7
DU (for first model (URM) in winter). Values for
MAE are also illustrated, to highlight the pattern of
model errors. Generally, the fourth model (LRM-AI)
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performs better, as do both kinds of models
incorporating lagged ozone data. Thus, that model has
the overall lowest MAE values and the first model
(URM) the highest.

Table 3 MAE indicate the absolute average value of all such

deviations
MAE (DU)
URM LRM LRM-501 | LRM-A]
Winter 19.71 13.74 13.52 13.41
Spring 10.02 8.13 797 7.94
Summer 5.59 4.06 4,08 4.01
Autumn 11.42 7.85 1.36 123

The results for RMSE follow a remarkably similar
pattern to MAE, but with slightly higher values
because of the outlier sensitivity. The RMSE results
show the broad quarter-based dependency on mean of
observations, as well as the better performance of
fourth model (LRM-AI)} and another both forms of
lagged model (lowest RMSE of 5 DU (for fourth
model in summer), highest of 25.7 DU (for first model
in winter), as shown in (table 4). Both the MAE and
RMSE results provide interesting contrasts in
prediction errors between the various quarters,
Summer has smallest MAE and RMSE.

Table 4 RMSE indicate the performance of models related to

5€3s0ns
RMSE (DU}
URM LRM LRM-501 | LRM-AlL
Winter 25.78 18.61 18.48 18.41
Spring 13.74 1112 10.92 10.84
Summer 6.97 5.11 5.14 5.05
Aulumn 14.97 10.72 10.08 9.98

Mean Absolute Percentage Error (MAPE), measures
the accuracy of fitted time series values. It expresses
accuracy as a percentage. It ranges between 1.4% (for
the best model (LRM-AI), in the summer quarter), and
6.6% (for (URM), in the autumn quarter), as shown in
(table 5).

Table 5 MAPE measures the accuracy of fitted Lime series values

MAPE %
URM LRM LRM-501 | LRM-AI
Winter 6.66 4.58 4,51 4.47
Spring 323 2.62 257 2.57
Summer 1.96 1.42 1.43 141
Autumn 4.14 2.84 2.68 263
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Fig.6 Correlation between observed & predicted ozone in DU (indicating the efficiency of LRM model over URM model)

5. Conclusions

This paper shows the Multiple linear regression (MLR)
modeling approach in order to predict ozone
concentration over Egypt as a function of
meteorological parameters (reflectivity, ultraviolet
solar intensity, and solar zenith angle (SZA)) and
pollutants indexes (aerosol index, and sulfur oxides

index). The four MLR models were used to prepare a
regression model were compared with each other, It
was found that the lagged models (LRM, LRM-SOI,
and LRM-Al) give an acceptable response more than
unlagged model (URM), and the fourth model (LRM-
Al provide the most reasonable results than the other
lagged models (LRM, LRM-SQI).
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Appendix A

One of the most common indicators used in error
analysis is the mean absolute error. This term is used
similar to variance, The MAE of an estimator Y; with
respect to the estimated parameter X, is defined as

MAE =-SL.IT-X| )

Where n is the number of data points. The MAPE is
measure of accuracy in a fitted time series

MAPE =TI, )]

Y|—X[|
Yy
We used the MBE to describe how much the estimator
underestimates or overestimates the situation. The
MBE was determined using the following equation:

MBE =251, (1) )

The mean squared error (MSE) of an estimator is the
square of the amount by which the estimator differs
from the quantity to be estimated. The difference
occurs because the estimator does not account for
information that could produce a more accurate
estimate. The RMSE which gives an idea of the
magnitude of the non-systematic error is then simply
defined as the square root of the MSE. The
mathematical formula of the RMSE is given by

RMSE = ’%z;;l(v. AN

In general, correlation coefficient,r, indicates the
strength and direction of a linear relationship between
two random variables. The correlation coefficient is 1
in case of an increasing linear relationship and -1 in
cas¢ of a decreasing linear relationship, and some
value in between in all other cases, indicating the
degree of linear dependence between the variables.

— i -V)-X-%)
r= [Ty, -2 (DX ~-X)2])0-5 ™

Where, Y is the estimated mean value.

The coefficient of determination (R), used to illustrate
the relationship between observed and estimated
values, and it equals the square of the correlation
coefficient and it varies between 0 to 1,
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