Mansoura University
Faculty of Eng.
Public Works Eng. Dept.

4th year, Civil Eng. Sanitary Eng. Time: 3.0 Hrs

رابعة مدنى - 2013 - 2-6

General Instructions

(الامتحان في صفحتين + صفحتين منحنيات)

The total marks of the exam is (90) marks
Any missing data can be reasonably assumed

1- a) Describe with neat sketch for the following:

<u>(8 marks)</u>

- Horizontal and vertical baffling type flocculator.

-Velocity Gradient (G).

- inlet and outlet zones of rectangular sedimentation tank.

- tapered flocculation.

b) Mark ($\sqrt{\ }$) the correct sentence and (X) the wrong one with the correction

(4 marks)

-Friction coefficient (C) whose value depends on the type pipe only.

-The optimum pH range for ferric sulfate must be raised to 9.5.

-The zeta potential is a direct measure of the electrical charge of the colloidal particle.

-Colloids - so small: gravity settling is not possible.

- 2-a) Design a rectangular flocculator sedimentation tank for supplying water to population of 80000 capita with an average water consumption of 220 l/c/d. Assume for sedimentation tank, surface loading rate of 30 m³/m²/d and detention time = 2.5 hrs. (7 marks)
 - b) A flocculator basin in figure is rotated through water with an angular speed 5.0 rpm. If the flow is $12000 \text{ m}^3/\text{d}$ and $Gt = 4.5 \times 10^4 \text{ g}$

 $(\mu = 1.002 \times 10^{-3} \text{ N.S/m}^2)$, determine:

- the basin dimensions.

- the power dissipated into water,

- the paddle configuration,

Sec. S.V. Q = 30 Q = 30

- 3- a) Draw cross section elevation of dual-medium gravity rapid filter showing all pipes and valves. (2 marks)
 - b) Explain the purpose of the different locations of disinfectant injection in the water supply systems. (2 marks)

(6 marks)

c) A water treatment plant produce 100000 m³/d. The dual media filter unit has an area of 48 m², its filtration rate is 9.0 m/hr, the water backwash rate is 26 m³/m²/hr for 12 minutes.

1. Determine the total number of filter units. (2 marks)

- 2. Determine quantity and percent of backwash water. (2 marks)
- 4-a) Draw the cross section elevation of balancing elevated tank showing all pipes and valves. (2 marks)
 - b) A city with a population of 0.50 million has a continuous water supply. The average daily demand of the capita in this town is 200 l/d consumed as shown in the table. Determine the capacity of the elevated tanks required in the following cases:
 - 1- high lift pumps works with uniform rate for 24 h/d,
 - 2- high lift pumps works with uniform rate for 18 h/d.

Suggest other case to more minimize the capacity of the elevated tanks and calculate it. (6 marks)

Time	Rate (L/4hr)	Time	Rate (L/4hr)
12 M.N - 4 A.M 4 - 8	; 16 30	12N - 4 P.M 4 - 8	48 38
8 – 12 N	58	8 - 12 MN	10

				* .	
	I the empty space: (3)				
1. T	he water distribution net	twork modes are: 1	2	., 3, and 4	
	alue of the force acting o				
	he minimum inner heigh				
	ield pipe pressure test ru				
6. W	ater leak detection and i	repair programs sav	e	an a	
b) For	the following water dist	ribution network (C	Q = 85 L/sec	estimate the height of	
the c	elevated tank which will	be constructed at	point (A) to h	ave water pressure at	
	$t F = 2.5 \text{ kg/cm}^2$, conside				
	e discharge (Q) is increas				
	aintain the pressure at p				
	В	(,) - 1			
A	D		D		
85	L/sec 500m, \$ 400 mm	400 m, \$300 mm	250 m,		
		As well have cover	\$300 mm	n.	
	200 m,				
	\$200mm	400	F		
	C	300 m, \$200 mm	E 500 m,	, \$400 mm F	
				and a second control of the process of the second control of the s	
-Types -A late	orief notes on: of collection systems ral sewer and a main sewer	-Factors governing	the design of gr	avity sewers (6 marks)	
c) A circu					
	lar combined sewer is to ca	arry 0.35 m ³ /sec. Wh	en running 2/3	full at max. W.W.F. and 0.1	
				full at max. W.W.F. and 0.1	
/sec at	min. D.W.F. Determine th	ne diameter and mini	mum slope of t	the sewer. Calculate the vel	
/sec at and de	min. D.W.F. Determine the	ne diameter and mini imum W.W.F. and m	mum slope of t inimum D.W.F.	the sewer. Calculate the vel . Determine also the diamet	
/sec at and de pumpi	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max.	ne diameter and mini imum W.W.F. and m .D.W.F of the main se	mum slope of t inimum D.W.F. ewer if θ=10min	the sewer. Calculate the vel . Determine also the diamet n. and d = 2.0 m. (8 marks)	
/sec at and de pumpi d) Design	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions o	ne diameter and mini imum W.W.F. and m. D.W.F of the main soft the following treatm	mum slope of t inimum D.W.F. wer if θ=10min tent units in sev	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) wage treatment plant:	
/sec at and de pumpi d) Design i)Appr	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of the channel.	ne diameter and mini imum W.W.F. and m .D.W.F of the main se	mum slope of t inimum D.W.F. wer if θ=10min tent units in sev	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank	
/sec at and de pumpii d) Design i)Appr Given	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data:	ne diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatmii) Grit Chamber	mum slope of t inimum D.W.F. ewer if θ=10min ent units in sew iii) primary	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks)	
/sec at and de pumpii d) Design i)Appr Given	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of the channel.	ne diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatmii) Grit Chamber	mum slope of t inimum D.W.F. ewer if θ=10min ent units in sew iii) primary	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks)	
/sec at and de pumpin d) Design i)Appr Given to Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m ³ /d., Qmax. = 13	ne diameter and mini imum W.W.F. and m D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m ³ /d., Over flow	mum slope of t inimum D.W.F. wer if θ=10min ent units in sew iii) primary v rate of grit ch	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks)	
/sec at and de pumpii d) Design i)Appr Given i Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m ³ /d., Qmax. = 100000 processes diagram of sexpensions.	ne diameter and mini imum W.W.F. and m D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m ³ /d., Over flow	mum slope of t inimum D.W.F. wer if θ=10min tent units in sew iii) primary v rate of grit ch	the sewer. Calculate the vel. Determine also the diamet m. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) namber = 1200 m ³ / m ² /d	
/sec at and de pumpii d) Design i)Appr Given i Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. The following data: = 100000 m ³ /d., Qmax. = 18 dock processes diagram of seven the correct senter.	ne diameter and mini imum W.W.F. and m D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m ³ /d., Over flow dudge treatment. (2 m nce and (X) before the	mum slope of tinimum D.W.F. wer if θ=10min tent units in sew iii) primary v rate of grit ch narks) he wrong one (6	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks) namber = 1200 m ³ / m ² /d	
/sec at and de pumpii d) Design i)Appr Given i Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of s \[\) before the correct sente the correct sente and the correct senteness	he diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m³/d., Over flow fludge treatment. (2 n nce and (X) before the life of the first of the fir	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) he wrong one (6	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) hamber = 1200 m ³ / m ² /d	
/sec at and de pumpii d) Design i)Appr Given i Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 15 ock processes diagram of sextended in the correct sente ock processes diagram of sextended in the correct sente ock processes diagram of sextended in the correct sente ock processes diagram of sextended in the correct sente	he diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m³/d., Over flow fludge treatment. (2 n nce and (X) before the life of the first of the fir	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) he wrong one (6	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks) namber = 1200 m ³ / m ² /d	
/sec at and de pumpii d) Design i)Appr Given Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of sextended to biomass.	he diameter and mini imum W.W.F. and m.D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m³/d., Over flow fludge treatment. (2 n nce and (X) before the life منبوعة بشرطة ثم عالم المواحدة منبوعة بشرطة ثم عالم المواحدة منبوعة بشرطة ثم عالم المواحدة المواحد	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) he wrong one (6 سطر منفرد بورقة dal and dissolv	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d	
/sec at and de pumpii d) Design i)Appr Given Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of s \[\) before the correct sente \[\] In wastewater biological converted to biomass. Nitrification and deni oxidation carrousel ditch	he diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m³/d., Over flow sludge treatment. (2 n nce and (X) before the live of the house of the colloistrification processes in.	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) ne wrong one (6 narks) dal and dissolv	the sewer. Calculate the vel. Determine also the diamet. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks) namber = 1200 m ³ / m ² /d o marks) يتم كتابة رقم كل عبارة فقط في ved biodegradable solids are eved in sequence places in	
/sec at and de pumpii d) Design i)Appr Given Qave. = -a) Draw bl b) Mark (min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 ock processes diagram of sextended to biomass.	he diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m³/d., Over flow fludge treatment. (2 n nce and (X) before the care and (X) before the care and the colloistrification processes in the effluent of complete.	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) ne wrong one (6 narks) dal and dissolv	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d	
/sec at and de pumpii d) Design i) Appr Given Qave. = -a) Draw bl b) Mark (min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of sextended to biomass.	he diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m³/d., Over flow fludge treatment. (2 n nce and (X) before the care and (X) before the care and the colloistrification processes in the effluent of complex.	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) he wrong one (6 أسطر منفرد بورقة dal and dissolv can be achie	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d o marks) يتم كتابة رقم كل عبارة فقط في ved biodegradable solids are eved in sequence places in tors has better quality than	
/sec at and de pumpii d) Design i) Appr Given Qave. = -a) Draw bl b) Mark (min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of s \(\) before the correct sente \(\) before the correct sente \(\) before the	he diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatment ii) Grit Chamber 80000 m³/d., Over flow and (X) before the cand (X) before the effluent of complete itrification processes h. the effluent of complete.	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) he wrong one (6 he wrong one (6 al and dissolv can be achie ete mixed reac	the sewer. Calculate the vel. Determine also the diamet. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks) namber = 1200 m ³ / m ² /d o marks) يتم كتابة رقم كل عبارة فقط في ved biodegradable solids are eved in sequence places in	
/sec at and de pumpii d) Design i) Appr Given Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of s \[\) before the correct sente \[\s	he diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatment ii) Grit Chamber 80000 m³/d., Over flow shudge treatment . (2 n nce and (X) before the processes in the effluent of complex. contactors(RBC) is ne membrane filtration.	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) he wrong one (6 abl and dissolv can be achie ete mixed reac a combination process.	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d o marks) يتم كتابة رقم كل عبارة فقط في ved biodegradable solids are eved in sequence places in tors has better quality than	
/sec at and de pumpii d) Design i) Appr Given (Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of sextended by before the correct senter and denification and denification carrousel ditched for the same volumes, that of plug flow reactor the rotating biological treatment process and the hydraulic losses in system.	he diameter and mini imum W.W.F. and m. D.W.F of the main set of the following treatm ii) Grit Chamber 80000 m³/d., Over flow bludge treatment. (2 n nce and (X) before the care of the colloid treatment the colloid treatment the colloid treatment of complex. contactors(RBC) is ne membrane filtration trickling filters systematical interesting the contactors of the contactor o	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) ne wrong one (6 iii) primary v rate of grit ch narks) ne wrong one (6 iii) primary and dissolv can be achie ete mixed reac a combination process.	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d marks) with the sequence places in the sequence places in the sequence places in the sequence sequence places in the sequence sequence places in the sequenc	
/sec at and de pumpii d) Design i)Appr Given Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 15 lock processes diagram of s before the correct sente	he diameter and minimum W.W.F. and m. D.W.F of the main so of the following treatment ii) Grit Chamber 80000 m³/d., Over flowed and (X) before the following treatment . (2 n nce and (X) before the following treatment the collowing treatment the collowing filters of complex. contactors(RBC) is ne membrane filtration trickling filters systems.	mum slope of t inimum D.W.F. wer if θ=10min ient units in sew iii) primary v rate of grit ch narks) ne wrong one (6 narks) dal and dissolv can be achie ete mixed reac a combination n process. em is bigger th	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d marks) يتم كتابة رقم كل عبارة فقط في ved biodegradable solids are ved in sequence places in tors has better quality than on of the activated sludge and that in activated sludge filters all are attached	
/sec at and de pumpii d) Design i) Appr Given (Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of sextended by before the correct senter in the processes diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process and the process diagram of sextended by before the correct senter in the process and the process are process and the process are process and the process are process and the process and the process are process and the p	ne diameter and mini imum W.W.F. and m. D.W.F of the main so of the following treatm ii) Grit Chamber 80000 m³/d., Over flow fludge treatment. (2 n nce and (X) before the care and (X) before the care and (X) before the care and the colloiditrification processes in the effluent of complex. contactors(RBC) is ne membrane filtration trickling filters systems. It is to treat a wastens to treat a wastens.	mum slope of the inimum D.W.F. where if θ=10min tent units in sew iii) primary we rate of grit charks) the wrong one (6 and dissolvation be achied to a combination process. In the image of the imag	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) vage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d omarks) wed biodegradable solids are eved in sequence places in tors has better quality than on of the activated sludge and that in activated sludge and marks are attached and marks and with a BOD5 of	
/sec at and de pumpii d) Design i) Appr Given (Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of sextended by before the correct senter with the following data: In wastewater biological converted to biomass. Nitrification and denification carrousel ditched for the same volumes, that of plug flow reactor that of plug flow reactor the rotating biological treatment process and the The hydraulic losses in system. The Membrane Bioreact culture biological treatment an activated sludge reactor activated sludge reactor. Lafter primary treatment and character activated sludge reactor.	ne diameter and mini imum W.W.F. and m. D.W.F of the main set of the following treatment ii) Grit Chamber 80000 m³/d., Over flow and (X) before the cand (X) before the cand (X) before the cand (X) before the cand itrification processes in the effluent of complex. contactors(RBC) is ne membrane filtration trickling filters systems to treat a wastet. The effluent BOD5	mum slope of the inimum D.W.F. where if θ=10min tent units in sew iii) primary we rate of grit charks) the wrong one (6 and and dissolved a combination process. I and trickling for the effow of 250 is to be less that inimum D.W.F. I and trickling for the effow of 250 is to be less that inimum D.W.F. I and trickling for the flow of 250 is to be less that inimum D.W.F. I and trickling for the flow of 250 is to be less that inimum D.W.F. I and trickling for the flow of 250 is to be less that inimum D.W.F. I and trickling for the flow of 250 is to be less that inimum D.W.F. I and trickling for the flow of 250 is to be less that inimum D.W.F. I inimum D.W.	the sewer. Calculate the vel. Determine also the diamet in. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d marks) wad biodegradable solids are biodegradable solids are tors has better quality that on of the activated sludge and that in activated sludge in that in activated sludge in the sequence places in an that in activated sludge in that in activated sludge in that in activated sludge in 20 mg/l, assume X = 3500 mg/l, assume X = 3500	
/sec at and de pumpin d) Design i)Appr Given (Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of select of the correct sente of the correct sente of the correct sente of the correct sente of the converted to biomass. Nitrification and denification carrousel ditches for the same volumes, that of plug flow reactor of the rotating biological treatment process and the the hydraulic losses in system. The Membrane Bioreact culture biological treatment process and the correct sente of the same volumes, that of plug flow reactor of the same volumes, that of plug flow reactor of the hydraulic losses in system. The Membrane Bioreact culture biological treatment process and the culture biological treatment of the primary treatment of the prima	ne diameter and minimum W.W.F. and m. D.W.F of the main so of the following treatment ii) Grit Chamber 80000 m³/d., Over flowed and (X) before the following treatment . (2 n ince and (X) before the first of the colloid trification processes in the effluent of complex. contactors(RBC) is no membrane filtration trickling filters systems. for (MBR), bio-towers ient systems. tors to treat a wastet. The effluent BOD5 kd = 0.07 d¹¹, and F	mum slope of the inimum D.W.F. where if θ=10min tent units in sew iii) primary where a configuration process. The isolated and dissolved a combination process. The isolated isolated isolated in process. The isolated isolated isolated isolated isolated in process. The isolated iso	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d marks) wed biodegradable solids are biodegradable solids are tors has better quality than on of the activated sludge and that in activated sludge are attached and that in activated sludge are attached and that in activated sludge are attached and the activated sludge are attached and the activated sludge are attached and the activated sludge attached attached and the activated sludge attached at	
/sec at and de pumpii d) Design i) Appr Given (Qave. =	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 15 lock processes diagram of select of the correct sente of the correct sente of the correct sente of the following data: In wastewater biological converted to biomass. Nitrification and deni oxidation carrousel ditched for the same volumes, that of plug flow reactor oxidation treating biological treatment process and the the hydraulic losses in system. The Membrane Bioreact culture biological treatment an activated sludge reactivated sludge rea	ne diameter and minimum W.W.F. and m. D.W.F of the main so of the following treatment ii) Grit Chamber 80000 m³/d., Over flow diage treatment. (2 n nce and (X) before the care and (X) before the care and (X) before the care and the colloistrification processes in the effluent of complex. contactors(RBC) is ne membrane filtration trickling filters systems. tor (MBR), bio-towers ient systems. tors to treat a wast t. The effluent BOD5 kd = 0.07 d¹, and Fee.	mum slope of the inimum D.W.F. where if θ=10min tent units in several primary and varied of grit charks) ne wrong one (6 معلم منفرد بورقة dal and dissolv can be achied the ete mixed react a combination process. em is bigger the and trickling for the efform of 250 is to be less that a Mean cell results.	the sewer. Calculate the vel. Determine also the diamet n. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) namber = 1200 m³/ m²/d marks) المناف الم	
/sec at and de pumpin d) Design i)Appr Given (Qave. = 7-a) Draw bl b) Mark (1- () 2- () 3- () 6- () 6- () c) Design a 220 mg mg/L, 2	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of sextended by before the correct senter in the processes diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the same volumes, that of plug flow reactor in the process and the pr	ne diameter and mini imum W.W.F. and m. D.W.F of the main set of the following treatment ii) Grit Chamber 80000 m³/d., Over flow of the following treatment . (2 n ince and (X) before the first of the following treatment the colloid itrification processes in the effluent of complex. contactors(RBC) is no membrane filtration trickling filters systems. It is to treat a waste to the effluent BOD5 kd = 0.07 d¹, and Feed.	mum slope of the inimum D.W.F. where if θ=10min tent units in sew iii) primary we rate of grit charks) the wrong one (6 and and dissolved and dissolved and trickling from is bigger the and trickling from the flow of 250 is to be less that M = 0.4kg BO - Mean cell representation of the region o	the sewer. Calculate the vel. Determine also the diamet in. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) mamber = 1200 m³/ m²/d marks) wage treatment plant: sedimentation tank (8 marks) marks) wage treatment plant: sedimentation tank (8 marks) marks) wage treatment plant: sedimentation tank (8 marks) wage treatmentation	
/sec at and de pumpin d) Design i)Appr Given gave. = 7-a) Draw bl b) Mark (1- () 2- () 3- () 6- () 6- () c) Design a 220 mg mg/L, 2 marks)	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of sextended by before the correct senter in the processes diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the same volumes, that of plug flow reactor in the process and the pr	ne diameter and mini imum W.W.F. and m. D.W.F of the main set of the following treatment ii) Grit Chamber 80000 m³/d., Over flow of the following treatment . (2 n ince and (X) before the first of the following treatment the colloid itrification processes in the effluent of complex. contactors(RBC) is no membrane filtration trickling filters systems. It is to treat a waste to the effluent BOD5 kd = 0.07 d¹, and Feed.	mum slope of the inimum D.W.F. where if θ=10min tent units in sew iii) primary we rate of grit charks) the wrong one (6 and and dissolved and dissolved and trickling from is bigger the and trickling from the flow of 250 is to be less that M = 0.4kg BO - Mean cell representation of the region o	the sewer. Calculate the vel. Determine also the diamet in. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) mamber = 1200 m³/ m²/d marks) wage treatment plant: sedimentation tank (8 marks) marks) wage treatment plant: sedimentation tank (8 marks) marks) wage treatment plant: sedimentation tank (8 marks) wage treatmentation	
/sec at and de pumpin d) Design i)Appr Given (Qave. = 7-a) Draw bl b) Mark (1- () 2- () 3- () 6- () 6- () c) Design a 220 mg mg/L, 2	min. D.W.F. Determine the pth of sewage flow at maxing station to meet the Max. and check all dimensions of oach channel. the following data: = 100000 m³/d., Qmax. = 13 lock processes diagram of sextended by before the correct senter in the processes diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the process diagram of sextended by before the correct senter in the same volumes, that of plug flow reactor in the process and the pr	ne diameter and minimum W.W.F. and m. D.W.F of the main so of the following treatment ii) Grit Chamber 80000 m³/d., Over flow diage treatment. (2 n nce and (X) before the care and (X) before the care and (X) before the care and the colloistrification processes in the effluent of complex. contactors(RBC) is ne membrane filtration trickling filters systems. tor (MBR), bio-towers ient systems. tors to treat a wast t. The effluent BOD5 kd = 0.07 d¹, and Fee.	mum slope of the inimum D.W.F. where if θ=10min tent units in sew iii) primary we rate of grit charks) the wrong one (6 and and dissolved and dissolved and trickling from is bigger the and trickling from the flow of 250 is to be less that M = 0.4kg BO - Mean cell representation of the region o	the sewer. Calculate the vel. Determine also the diamet in. and d = 2.0 m. (8 marks) wage treatment plant: sedimentation tank (8 marks) mamber = 1200 m³/ m²/d marks) wage treatment plant: sedimentation tank (8 marks) marks) wage treatment plant: sedimentation tank (8 marks) marks) wage treatment plant: sedimentation tank (8 marks) wage treatmentation	

500 400 300	1800 1700 1600 1500 1400 1300 1200 1100 1000	0.05 0.06 0.08 0.1	0.25
200 150 100 90 90 70 1	800 700 600 500 400 (EE)	0.3 0.4 0.5 0.6 0.7 0.8 1.0 2 0001/H pead	0.40 - 0.50 - 0.60 - 0.70
60 and 30 - 30 - 20	200 - 150	15 pead to seed to see	0.80 H 0.90 A) 1.0 1.1 1.2 1.3 1.4
15 10 9 - 8 - 7 - 6	100 90 80 70 60	40 50 60 70 80 100 150	1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4
Nom.	50 40 Ograph of Hazen-	300 	2.6 2.8 3.0