Solve all the following questions:

1) Letting the function $v=e^{-x}(x \cos y+y \sin y)$. Prove that v is harmonic, find the conjugate u in such away that $f(z)=u+i v$ is analytic, find the orthogonal trajectories of the family of curves $e^{-x}(x \cos y+y \sin y)=\beta$ and express $f(z)$ in terms of z.
2) If $w=f(z)=u+i v$ is analytic in R, show that u satisfies Laplace's equation

$$
\nabla^{2} \mathrm{u}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{u}}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}^{2}} \frac{\partial^{2} \mathrm{u}}{\partial \theta^{2}}=0
$$

3) Letting the function $u=r^{2} \cos 2 \theta$. Prove that u is harmonic, find the complex conjugate v in such away that $f(z)=u+i v$ is analytic, find the orthogonal trajectories of the curves $r^{2} \cos 2 \theta=\alpha$ and express $f(z)$ in terms of z.
4) In the transformation $w=u+i v=z+z^{-1}$ where $z=r e^{i \theta}$, express (u, v) in terms of (r, θ) and deduce that circles $r=c,(c \neq 1)$ in the z-plane are transformed into con-focal ellipses in w-plane, plot. Using polar coordinates show that w is analytic.
5) Letting R_{z} be a region in the z-plane bounded by the straight lines $x=0, x=2, y=0, y=1$. Determine the region R_{w} in the w-plane in which R_{z} is mapped under the transformation $w=\sqrt{2} e^{(\pi / 4) i} z+(1-2 i)$, plot R_{z} and R_{w}. Using the Jacobean of transformation determine the numerical ratio R_{w} / R_{z}, then check your result from the graphs.
6) The circle of radius a in ζ-plane is transformed into the aerofoil section in z-plane by the transformation $z=g(\zeta)=\varsigma+a \zeta^{-1}$, deduce the inverse function $\zeta=g^{-1}(z)=f(z)$ for large values of z. If $\zeta=\mathrm{f}(\mathrm{z})=\eta+\mathrm{i} \xi$, using the Cartesian equations of Cauchy Riemann prove that $\mathrm{f}(\mathrm{z})$ is analytic.
7) Solve for x the integral equation $x^{2}+4 x \int_{0}^{\infty} x e^{-x} \sin x d x-3=0$
8) If $k \int_{-\infty}^{\infty} \frac{x^{2}}{(x+1)(x-1)^{2}} d x=6 \pi i$, using the contour integral and the residues theorem, calculate the constant k where $\int_{\Gamma} \frac{x^{2}}{(x+1)(x-1)^{2}} d x=0$.
