اختبار دراسات عليا مستوى ٢٠٠ دوال المتغير المركب (١) (BES 626) التاريخ: ٢٠١٤/١/١٨م الزمن: ثلاث ساعات

جامعة المنوفية كلية هندسة شبين الكوم قسم العلوم الأساسية الهندسية الفصل الدراسي الأول ٢٠١٤م

Solve all the following questions:

1) Letting the function $v=e^{-x}(x \cos y+y \sin y)$. Prove that v is harmonic, find the conjugate u in such away that f(z)=u+iv is analytic, find the orthogonal trajectories of the family of curves $e^{-x}(x \cos y+y \sin y)=\beta$ and express f(z) in terms of z.

2) If w=f(z)=u+iv is analytic in R, show that u satisfies Laplace's equation

$$\nabla^2 \mathbf{u} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} \frac{\partial \mathbf{u}}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial^2 \mathbf{u}}{\partial \theta^2} = 0$$

3) Letting the function $u=r^2\cos 2\theta$. Prove that u is harmonic, find the complex conjugate v in such away that f(z)=u+iv is analytic, find the orthogonal trajectories of the curves $r^2\cos 2\theta = \alpha$ and express f(z) in terms of z.

4) In the transformation $w=u+iv=z+z^{-1}$ where $z=re^{i\theta}$, express (u,v) in terms of (r, θ) and deduce that circles r=c, (c \neq 1) in the z-plane are transformed into con-focal ellipses in w-plane, plot. Using polar coordinates show that w is analytic.

5) Letting R_z be a region in the z-plane bounded by the straight lines x=0, x=2, y=0, y=1. Determine the region R_w in the w-plane in which R_z is mapped under the transformation $w = \sqrt{2} e^{(\pi/4)i} z + (1-2i)$, plot R_z and R_w . Using the Jacobean of transformation determine the numerical ratio R_w/R_z , then check your result from the graphs.

6) The circle of radius a in ζ -plane is transformed into the aerofoil section in z-plane by the transformation $z=g(\varsigma)=\varsigma+a\varsigma^{-1}$, deduce the inverse function $\zeta = g^{-1}(z) = f(z)$ for large values of z. If $\zeta=f(z)=\eta+i\xi$, using the Cartesian equations of Cauchy Riemann prove that f(z) is analytic.

7) Solve for x the integral equation $x^2 + 4x \int_{0}^{\infty} xe^{-x} \sin x \, dx - 3 = 0$

8) If $k \int_{-\infty}^{\infty} \frac{x^2}{(x+1)(x-1)^2} dx = 6\pi i$, using the contour integral and the residues theorem, calculate

the constant k where $\int_{\Gamma} \frac{x^2}{(x+1)(x-1)^2} dx = 0.$