(1)

(m)

(a)

(b)

Menoufia University

Faculty of Electronic Engineering

Dept. Industrial electronics and Control Eng.

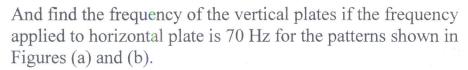
Final-Term Exam

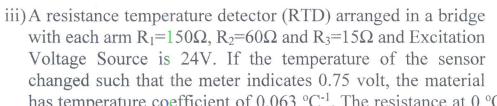
(1st Year)

Time: From 10 Am to 1 PM

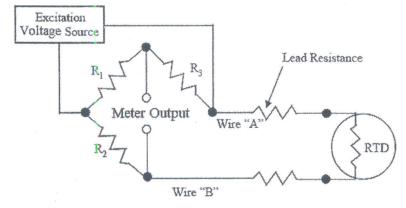
13/6/2019.

Electrical Measurements (ACE 125)


No. of pages (2) - Full mark (30)


Part (II)

Answer the following questions:


Question (1): [15 Degree]

- i) Explain the working principle of a linear variable differential transformer (LVDT). Show how it can be used for measuring small mechanical displacements.
- ii) Find the frequency ratios for the Lissajous patterns produced by voltage applied to vertical and horizontal plates as shown in Figures (a) and (b), respectively.

has temperature coefficient of 0.063 °C⁻¹. The resistance at 0 °C is 6 Ω . Find the sensor temperature and the power consumed in it.

Question (2): [15 Degree]

- i) Describe the working of Maxwell's inductance—capacitance bridge. Derive the equations for balance condition. Explain why it is suitable for measurement of inductors having quality factor in the range 1 to 10.
- ii) With a neat sketch, briefly describe the principle of electromagnetic flow meter. What are the advantages of an electromagnetic flow meter?

- iii) Two voltages E₁ and E₂ have the same frequency are applied to both the horizontal input and the vertical input of the CRT, respectively. The resulted trace on the screen is a symmetrical ellipse about horizontal and vertical axis. The slope of the major axis is negative. The maximum vertical value is 3 divisions and the point where the ellipse crosses the vertical axis is 2.6 divisions. Determine the possible phase angle of E₂ with respect to E₁.
- iv) A meter movement has an internal resistance of 80Ω and requires 0.5mA dc for full scale deflection. Shunting resistance R_{sh} placed across the movement has a value of 100Ω and the value of R_6 equal 500Ω . Diodes D_1 and D_2 of figure have an average forward resistance of 70Ω each and are assumed to have infinite resistance in reverse direction. Calculate the values of the multiplier resistors.

Best Wishes

Dr. Ebrahim A. El-hamid