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Abstract

This paper deals with the application of locally weighted learning for forecasting
time series comesponding to a wide range of ARMA(p,g) models. The objective of this
paper is to explore the feasibility of locally weighted learning in time series
forecasting. The study adopted a simulation approach to generate random samples
correspending to different time series models. The samples were divided into 1wo sets:
training and test sets. The training set was used 1o estimate the parameters of the
locally weighted learning whereas the test set was used to test its performance. The
results of the locaily weighted learning were compared to those obtained from using
Box-Jenkins modeling approach. The results of the study show that locally weighted
learning outperforms Box-Jenkins modeling approach based on the criteria used which
are mean squared error (MSE). mean absolute error (MAE) and ratio of the estimated
data points closer to actual data points (Ratio).

Accepled May 24, 2003.



M.2 Gamal A. M. Al-Shawadfi and Hindi A, Al-Hindi

1. Introduction

Box and Jenkins [1] introduced a forecasting approach for autoregressive moving
average (ARMA) models. Since their introduction, ARMA models have been used to
model time series data in a wide range of fields. In recent years, several new modeling
approaches for time series have emerged and the Box Jenkins models have been used
as benchmarks to evaluate the new approaches [2]. The new approaches suitable for
time series modeling include artificial neural networks (ANNs) [3][4][5], support
vector machines (SVMs) (6] and locally weighted learning (LWL) [7]. Artificial neural
networks received much attention in the area of forecasting and several studies proved
their superiority in time series forecasting.

The locally weighted leamning [7][8] is a memory-based technique that performs a
prediction when a query is received. The prediction is made using the neighboring
examples of the query, which are considered relevant according to a distance measure.
It involves storing the training data in memory and making a prediction on a query by
query basis where data points near the query point are given higher weights [8]. In
most leamning methods, a single global model is used to fit all the training data. On the
other hand, locally weighted leaming attempts to fit the training data only in a region
around the location of the query. This results in eliminating the impact of irrelevant
data points on forecasts.

The use of locally weighted learning has increased in many areas. Atkeson et al.
[9] discussed the application of locally weighted learning in robot control. Zografski
{10] applied locally weighted learning for nonlinear modeling control and forscasting.
Lawrence et al. [l1] compared locally weighted learning and neural networks in
tunction approximation where locally weighted learning performed better on half of
the test problems. Lejeune and Sarda [12) applied locally weighted leaming to estimate
density functions. Atkeson and Schaal {13] combined an artificial neural network with
locally weighted learning for representing nonlinear functions used in robot control.
More and Schneider [14] used locally weighted leaming in stochastic optimization on
randomly generated functions and a simulated manufacturing task. Wang and Zucker
{15] used locally weighted leamning to solve the multiple-instance probiem where they
found that this mathod is competitive with the best existing methods used to solve this
problem. These applications and many more are indications of the incieasing
popularity of this method in solving a wide range of problems.

This study is designed to investigate locally weighted learning to forecasting time
series corresponding to a wide range of ARMA(p,q) structures. Training and test
samples, for various ARMA(p,q) structures, were randomly generated 1o estimate the
parameters of the locally weighted learning model and evaluate its performance. The
rest of this paper is organized in the following manner. Section 2 presents a brief
overview of ARMA models. Section 3 describes the locally weighted learning
approach. Section 4 describes the procedure used to generate the data and the measures
used to evaluate the performance of the proposed approach. Section 5 discusses the
results of the siudy. Section 6 concludes this paper.
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2. ARMA(p,q) models
A linear stochastic model whose input is white noise a can be expressed as

follows [16][17]:

Y, SHta +@a_ +@.a_, t... 9

where u is the mean of a stationary process and ¢ , r=1,2, ... are coefticients which
satisfy Z:’_owﬁ , at is an uncorrelated random variables with means zero and variance

O'j. Equation (1) can be expressed in terms of a finite number of autoregressive (AR)
and/or moving average components. Let ¥V =y —u ., an AR(p) process can be
generally expressed as follows:

}-r = Q;r-l +¢2§:-Z ot ¢p3;r—p +ar (2)

An MA(q) process can be expressed as follows:

y=a-8a_---8a (3)

qi-e

A mixed ARMA(p,q) process can be expressed as:

V=@V 0TtV ta, —6a ——6a (4)

a%i-g

As it is well known, Box and Jenkins [1] have presented the most popular
procedure to analyze the ARMA models. The procedure consists of four phases: the
identification, estimation, diagnostic checking and forecasting phases. The
identification phase determines the initial number of autoregressive (AR) and moving
average (MA) parameters using the autocorrelation and partial autocorrelation
functions. The estimation phase is based on the maximum likelihood or nonlinear least
squares estimates. The diagnostic checking phase examines the residuals 10 see the
adequacy of the identified model. The last phase is the forecasting of future
observations using their conditional expectations. Bex and Jenkins procedure has been
extensively explained by Harvey [16], Choi [18], Lutkepoh! [19], Pankratz [20] and
Wei [21].

The Yule-Walker equations may help in the identification and estimation phases
of Box-Jenkins analysis. For example, Box and Jenkins [1] used the Yule Walker
equations for obtaining initial esumates of the parameters of a time series model . The
Yule Walker system of equations is:
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0 =9, +0,0 +000 + - +® 0,

o,=9p0 +, +®,0 + - +¢Ppp_: (5)

pP,=®p0 +®.0 ,+0p, + -+

"

where py  represents the autocorrefation and @, are the model parameters.
k=12 - p.

Replacing the theoretical autocorrelations p; by the estimated autocorrelations ¢
and solving the above system of equations, we obtain the Yule-Walker estimators:

© =R, (©)
where @ =[P, ], - - - CIJP]\ is the vector of estimated parameters, R 1s an estimate
of the px p marrix of correlations up 1o p-f and r is the vector [0, o - - - ,0,,]\.

The Yule-Walker estimator has the same asymptotic properties as the least
squarcs estimator. However it may have less attractive small sample properties |
Therefore the ieast squares estimator is usually used in practice, see Lutkepohl [19].

3. Locaily Weighted Learning
Given input variables x€ R and an output variable ve R, the following

mapping f : R" — R is considered of which there is a set of n examples {(x,. ¥}
generated from the following model [7]{9}[22]:

¥ = f(x)+E (N

where & is a random variable such that fg(s)=0 and E(gg;)=0 and
E(e"y=4,(x,). Vin 22 . The goal is to estimate the value of f(x) for a given query
point x_ using informalion pertaining only to & neighborhood of x, . The parameter
£ of the linear approximation of f(-) in a neighborhood of x_ can be obtained by
solving the foliowing local potynomial regression {22]:

! . [ dx..
Z{()‘. - x{ﬁ)'K(f—%x—“)]} (8)

where d(x;.x ) is the distance from the query point x, 10 x,. K() Is a weight

function, # is the bandwidth and a constant value 1 has been added to each vector x, in
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order to consider a constant term in the regression function. The solution to the
problem is given by [7][9]:

B=(XWWXY'WXWy =(Z'2)" 7' Wy o
; )
J4

= PZ Wy

where W is a diagonal matrix whose elements are w, = (K(d(x,.x, )/t and the

matrix X'WWX = ZZ is assumed to be non-singular so that its inverse P =(ZZ")"

is defined.
A leave-one-out cross validation (CV) estimation of the error variance

El(y, —yq):]can be easily obtained using the PRESS statistic [22], by calculating the

error ¢’ =y, - x; B _;. without the need to calculate the parameters £ _ from the
examples available with the /" observation removed as follows [22]:

y - X ZLY'ZWy v, -x B
’ gt -
1-2(ZZ) 7z, |- b,

or

e, =Y; _‘-Jﬂ—j

(10)

where z’ is the /" row of Z and therefore z, = w, X, and where fi ;s the j* diagonal
ciement of the matrix H =Z{(ZZ)"'Z".

The solution 10 the problem in (6) depends on the selection of the weight function
K{(-). The widely used weight function takes the following form [22]:

K(d(.r,‘rq)] _{1 if d(x;,x,) < h

,, an

0 otherwisw

To estimate the local regression modei, we ueed to find the optimal number & of
neighbors used in prediction. This is achieved by deriving & number of local models
each with different number of neighbors and selecting the best model. The parameter

B(k)or' the model obtained using the & nearest neighbors is updated using the standard
steps of recursive least squares algorithm as follows [9][22]:

P(k)x(k + Dx'(k + DP(k)

L+ X' (k + DPk)x(h +1)
y(k+Dh=Ph+NDx(k+1) ' (12)
ek +1) = vk +1)— x(k + ) (k)

Bk +1)= Bk + yik + De(k +1)

P(;"\+|)=P(L)—
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with P(k)=(Z'Z)™" and where x(k +1) is the (k + )" nearest neighbor of the query
point. After obtaining the matrix P{k +1), the cross validation (CV) errors can be
calculated as follows [9][22]:

y,—x Blk+1)

ok 1) = ,
ef k1) I-x Pk +1D)x,

Vjd(x;,x,) < h(k+1) (13)

For a given query point x_, a set of predictions _(k) each associated with a

q’
parameter estimate B(k) and an error vector e (k) derived using the & number of
neighborhood points. The mean square error for each model is [22]:

* cv 2
MisE = 2 eT B (14)

k
W

i=]

The prediction y, is obtained by comparing the predictions obtained for each vatue &
and selecting the one with lowest mean square errors as follows [9][22]:

5)4 = x;B(iz), with k= arg min MSE(k) (13)
k

4. Experiment

To investigate the potential of locally weighted learning to modeling time series,
simulated time series, generated from a wide range of coefficient values, were used in
the study. Coefficient values were chosen from various sub-regions of the parameter
space that satisfy the stationarity and invertability conditions of the generated time
series. Each of these sub-regions represents a structure with similar autocorrelation
functions and partial autocorrelation functions. The selected coefficient values ensure
the extensive coverage of the parameier space.

The experiment comprises two stages, namely LWL training and LWL testing.
Eight different ARMA(p,q) structures were considered each with different p and ¢
values which are {(1,0), (2,0), (0,1}, (0,2), (L,1), (1,2), (2,1), (2,2)}. Within each
structure, four different values of the structure parameters were selected. For example,
in case ARMA(L,0), the following values for ¢; were selected {g,=0.3, ¢, =0.5,
$,=0.7, ¢p,/=0.9}. This resulted in a total of 32 models with each model defined in
terms of its parameter set. For each coefficient set corresponding 10 an ARMA(p,¢)
model, 400 samples were randomly generated with each sample contains 20 data
points. The first 200 samples were used for training the locally weighted learning
mode! and the second 200 samples were used for testing its performance. The total
number of samples is 12400. The locally weighted tearning models were estimated
using the Lazy Learning Toolbox [23][24], for MATLAB®. Three evaluation measures
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were used to evaluate the performance of the LWL model. The first is the mean
squared error (MSE):

2 =5 (16)

MSE =5
[}

The second mieasure is the mean absolute error (MAE):

A (17
AE =12
M H
The third measure is the Ratio:
Ratio =~ (18)

n

where,
v; : actual values
¥, : forecasted volues

#n : sample size.
+: the number of points where LWL forecasts are closer to actual values than B-J
forecasts.

To assess the performarnce of the proposed locally weighted learning, the results
were benchmarked against those obtained using by the Box-Jenkins approach. Each of
the training data sets used to train the LWL model was used again to estimate the
parameters of the corresponding ARMA(2.g) model. The estimated ARMA model was
then used for moking forecasts using the data points in the test sample, Finally, the
mean squared error, mean absolute error and Ratio were calculated for performance
evaluation.

5. Results

Numerical results show that the proposed approach has a good performance in
forecasting ARMA(p.q) models. A comparison of the MSE, MAE and Ratio for the
locally weighted learning and the Box-Jenkins model is summarized in Table t and
discussed below:

1. The mean square error (MSE) statistic measures the residual variance where smaller
values for this statisiic are better. The proposed LWL forecasting approach tends to
have smaller MSE values compared to the Box-Jenkins method as can be seen in the
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Table. The average value for the MSE for LWL forecasts equals to 0.1259, which is
less than the MSE for Box-Jenkins models, which equals to 0.3076. Therefore, the
LWL approach performs better than Box-Jenkins approach, as measured by this
statistic. Notice that for all the eight models, MSE performance of the LWL is better
than that of the B-J method. This may suggest that the LWL approach has some
ability to forecast the behavior of the series in the future similar or better than B-I
methed.

Table 1: Moderate Behavior of LWL and B-J Forecasting Methods

Model Method MSE MAE RATIO
ARMA(1,0) LWL 0.0926 | 0.2326 | 0.7065
| I N
B-] 02408 | 03809 | 0.2935
Ee— -
ARMA(2,0) LWL r_0.1040 02570 | 07391 |
B-I 02338 | 0.4091 1 0.2609
ARMA(0,1) LWL 0.1729 | 03395 | 09130 |
B-J 03729 | 05723 | 0.0870
‘——7’_———“——4
ARMA(0,2) LWL 0.1646 | 03243 | 0.8750
I ] —
B-J 03373 | 05382 | 0.1250 |
A } 03138 | 0.7880
ARMA(L 1) LWL 0.1483 . ‘
Ao ARSI N SN B A
B-J 0.2716 J 0.4558 0.2120
ARMA(1,2) LWL 0.1249] 02865 | 0.7500
B-J 0.3434 1 04738 | 0.2500
ARMA(2,] LWL 0.0965 | 02455 | 08804
2.1) L] 0o
B-J 03640 | 04730 | 0.1196
| aoraarr o |
ARMA(2.2) LWL 0.1036 | 02617 | 0.8859
B-J 02971 | 04966 | 0.1141
Average LWL 0.1259 | 02826 | 08173
-
| B3 03076 | 04750 | 0.1827

2. The MAE statistic measures the mean absolute error and is smaller for LWL
forecasts for different ARMA(p,g) models than the corresponding Box-Jenkins
models. On average, the MAE for the LWL approach is 0.2826 which is better than the
MAE for the Box-Jenkins which is 0.4750.
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3. The Ratio in Table | measures the percentage of data where the LWL forecasts
closer to the actual values than Box-Jenkins forecasts. The Ratio values stay
con-istently better than that of Box-Jenkins models with average equals 81.73% as
measured by this statistic. The average value of the Ratio for Box-Jenkins models is
0.1827.

4. When trying to arrive at an appropriate ARMA(p,q) forecasting model in Box-
Jenkins method, the analyst makes decisions based on autocorrelation and partial
autocorrelation plots. Because this process relies on human judgment to interpret the
data, it can be slow and sometimes inaccurate. The analyst may turn to LWL approach
as a quicker and more accurate alternative. LWL is an ideal approach for finding
patterns in data without the need to rely on human judgment.

6. Conclusion

This study examined the feasibility of the locally weighted leamning in time series
forecasting. The study is based on a simulation approach in which training and test
samples were randomly generated to train and test the performance of the proposed
approach. In addition, the results obtained from the locally weighted learning were
compared to those obtained from Box-Jenkins approach. The findings show that the
focally weighted learning is able to obtain betler results on all the three evaluation
measures, which are MSE, MAE and Ratio. These findings added to the simplicity and
objectivity of the locally weighted learning makes it a sound approach for time series
forecasting.
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