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m ABSTRACT :

Thls paper investigates the implementation of optimal contrellers to
dynamic control systems and addresses thelir causality. First, a one-link
robot arm system is introduced as the model for which the optimal contreller
will be designed. This model is used in a discrete linearized form so as (o
ease the mathematics inveolved, however no generality is lost due to this
simplification as dictated by the obtained results. Then a proposed
time-optimal controller is flrst adopted in which the control requirements
are reduced to merely reaching a specified set-polint in the shortest possible
time. Thls, of course, gives rise to large control signals that may not be
physically attained resulting in a fictitious coniroller. Then a relaxation
is made to overcome this problem by applying a performance Iindex to be
minimized through the use of the minimum principle of Pontryagen. Finally, a
comparative analysis is briefly made supported by the response curves.

m INTRODUCTION :

The wide spread of digital computers, during the past decades, has made
it possible to deal with the increasing demands for systems of
high-perfermance via the use of optimal control theory. In designing an
optimal contreol system, the designer is faced with the system's physical
constraints that must be taken into consideration when choosing a performance
index to be minimized. Thus, the designer has to make compromises between an
optimal performance that could be supplied only by ideal systems, and a
sub-optimal performance that could be attained within ths physical
limitations Imposed by the physical control system.
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The cholce of the performance index determines ~to a great extent- the
nature of the resulting optimal controller, e. g, linear, non-linear,
stationary or time-varying ...etc. Two different approaches of various
control algorithms that are frequently encountered in modern control systems
are investigated in this work.

Firstly, we design a time-optimal controller [7,8] in which we have a
system with unbounded contrel 1lnput, thus the problem requirements include
only the performance requirements, i. e. we are required to choose a control
vector that will minimize the state vector in the shortest possible time with
no constraints put on the effort done to achleve such a goal. Following this
design procedure permits the utillzatlon of the Interested advantages of
bringing the system to any deslired steady state in the shortest possible
time, added to the simplicity of determination of the feedback gains
formulae, specially for low order ideal systems with unbounded inputs. From
an opposite point of view, one can consider that the ideal system with
unbounded inputs Is a flictitious assumption, so the practical required
settling time may not be small. Also, from practical considerations, the
designed contrel signal may not be physically realized. Hence, we prefer to
realize another contreol law that gives a smoother operation.

Secondly, the complete problem of optimization formulation is addressed by
including the state variables, contrel varliables, and system parameters all
in one performance index, then using Ponteryagen’s minimum principle [8-10]
to find the most sultable control wvector. This also permits several
interested advantages like :

{1) Spccifying sultable performance index, tr: analysis required for
designing the feedback gains are very simple, and well-suited for computer
implementation.

{2) The different system states could be differently weighted, and it is
up to the designer to declde which criterla can be chosen to be optimized.

{3) Designed feedback gain is a function of the positive semi-definite
matrices R and Q , which are arbitrary weighing elements, allowing the
designer great flexibility in choosing which elements or factors can minimize
the most.

(4) Designed controller could be physically realized.

But we must confess that the design computaticnal complexity increases for
continuous higher order systems, and it may be wvery difficult -if
not impossible- for non-linear systems.

As a practical model used for analysis,derivation and application for the
proposed controllers, we shall consider a one-link linearized time-invariant
second order robot arm [1-3,6]. Although this system might seem rather
simple, the ideas developed are by no means complete, general and may be
applied to any other complicated system but with more computational
complexity. :

In order to exploit the full power of digital computers and direct
simulation technlques, and te use the linear systems features in state space
powerful theory, an attempt is made to use a discretized version of the
original continuous systems after linearization [5,7].

Finally, representative results are Included for commenting and comparing
the two used approaches.
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m ONE-LINK ROBOT ARM MODELLING :

According to the simple description shown in fig. (1); the equation eof
motion of the one-link robot arm ¢an be written as [2,3,6]

u=—é-m12§+%mglslne ..... (1)
Y
Choosling our states to be : o X,
X, = g . x2 =8 1,n

we have the following state matrix

representative form : ¢mg
Fig. 1
% o 1 bS 0
1 1
. = sin x + y o .. (2)
x -1.58 (— Yy g X 3
2 1 b4 2 2
1 m 1

vhich Is a non-linear time-invariant system of equatlens.

Assuming that the system 1s supposed to operate around some given
set-point which is used as an equilibrium state; arocund which a linearlized
model for the robot arm could be easily deduced to yleld the following
simplified model [5-7]

% 0 1 ][ x 0
1 1
= + u o L (3)
% -C 0 X c
2 1 2 Fi
wvhere ; cC = Jg cos x| . c. = 3
1 21 1lo 2 2
m 1l
m,1 : are the arm mass and length respectlively
g : is the gravity acceleratlon
Now discretizing the linearized system to take the form :
X(k+1) = G X{k) + H O(k) , k=012, ...8 ... ()

where : G and H: are linear time-invariant matrices
k : Is the sampling instant.

Considering this linearized model, and using the well-known Cayley-Hamilton
method {4], we have : (Appendix)
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x (k+1) cos v C T sin Vv C1 T xlth
! ~ ! A
xz(k+1) - ¥ C1 gin ¥ C1 T cos ¥ C1 T xa(k)
Cz
o {1 -cosvC T]
+ 1 ! ulk) oL (5]
Cz
— sin ¥ C1 T
v C

1

where T : is the sampling perlod of time In seconds.

Simulation methods are used to assure the following two important
remarks : )

1- Both the non-linear and linearized models are almost identical (provided
that we have small deviatjons in 8). Hence no generality is leost due to
this approximation.

2- Discretized model assures the satisfactory accuracy and reliabllity of the
original system.

Calculatiens and results of these simulatlons are excluded for saving area,
since they don’t represent a main task for this paper. Only uncontrolled
dynamic responses with step input torque are shown in figures (3-a) and (4-a)
for undisturbed and disturbed links respectively, which will be valuable for
comparison with controlled links.

s TIME OPTIMAL CONTROLLER DESIGN :

Now for designing a linear control law, we can use the following suggested
form :
u=-Xx L (6)
where K : is a linear time-invarlant matrix.
U : as a special case, 1s considered unbounded,

1. e. —m £ ) 2w
Further, for second order system time optimality, we will consider +that the

system reaches ils steady state after only two sampling periods [7,8]. Then
according to equation (4) we have :

¥(T) =G X(0) + H UMY L. (7)

Xr =X{2T) =G X(T) + Ty L. (2)
Substituting (7) into (8), we can deduce :

X(0) =G 2X(2T) -G *HUO -G 2HUT ... (9)

Refering to the basic definitlon of G = et , and from similarity between

equations (4) and (5), the following ferms can be easily deduced :
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[ cos v C1 T - 2 sinv C T
-1 v C 1
G = 1
L ¥ C1 sin v C1 T cos ¥ C1 T
- cos 2Y C1 T - 1 sin ZVFE; T ]
G = v c‘
| ¥ Cl sin 2/ C T cos ZVHE: T

and equations (7), {8) and (9) can be reconstructed as follows :

1

[x(ty - ¢™* X1 = [0) u(0) - (67 H] U(T)
(%X(0) - 672 x ] =~ (67" 4) ul0) - 1672 H} u(T)
Using the notations : M{(T) =G 'H , LIT) = G °H
FM =67 X, D)= 6¢2X%

The state model of the two samples under consideratlion will be :

D (T) - x_(0) FAT) - x (T) M (T) L (T) u(g)
1 1 1 1 1 1

Dz[TJ - xz(O) Fz(T) - xz[T) Mz(T) Lz[T) u(T}

which can be solved to obtain the following control law :

1

L (T}
- )

-L_(T)
w(1) = [ 2a } xi[T) + [ - ] xz[T) +

where A = MliT) Lz{T) - Ll(T] MZ(T)

By back substitution of 4, L, F and M into equation (13), the final optimal

control law general expression will be :

u{kT)

where

It

R{kT) - K .

X(xT?

R(kT) - Kl xl(kT) - Ka xz(kT)

.15

[L2{T] FLT) - L (T) Fa(T}]
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C 9f
R(KT) = C‘ — (15-a)
2 2(1-cos V_E: T)
c, [ sin 2f‘c’;r - sln\/—CTT 1
K‘ = C . —_——— (15-b)
2 2 sin V_E: T - sin ZV_C: T

cos VC T ~ cos2VC T ]

Kz = = L — (15-c)
2 2 sin ¥ C1 T - sin 2/ C1 T
K e
1
G
12
+
. Xj(k+1) Xl(k]
— Hil —-ﬂ:::}——————————e Unit Delay
+F
G
11
G €
21

Xz(k}

Unit Delay T

s

G22

Fig. 2

As an applicatlon example, the following numerical data are considered :

m=1/g s 1 =030 , T =01 gec
T
e =8_=0 , Xf={05.0],
x1(0] =0 s xl[T) = 0.25 rad R xltzT} = 0.5 rad
Xz(O) =0 . Xz[T) = 4,82 radrssec . x.?,(ZT) =0 rad/sec
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Consequently, the suggested contrel law wlll be :
u = 0.164604 - 0.18538 X - 0.04251 x, N. m

Fig.(2) depicts the schematic diagram representation of this suggested
control law..

Fig. (3-b) shows the corresponding dynamic response for the undisturbed
iink, while fig. (4-b) shows the response for the same case but under
disturbance of output sudden changes of 10% , 20% at two different Iinstants
of time,

» OPTIMAL CONTROLLER DESIGN VIA PONTERYAGIN'S MINIMUM PRINCIPLE :

As an alternative optimal controller design procedure, which may treat
most of the drawbacks of the previous one, we will assume that we want to
optimize the linearized system such as fo minimize a specific performance
index of the form {8-10]

L

r
J= % [ XLy @ x(t) + uT(t) RUML) At ...l (16)
to
where : Q and R are positive semi-definite matrices.

which can be reconstructed for our discretized model given by equation (4)
with zero initial conditions { X{0) = 0 } to the form :

N-1
J=3 Ef(k) Q E(x) + u(k) R atk) ... (17)
®=0 .
vwhere E(K) = Kr - ¥(k) is the error vector
alk) = u_ - k) . ulk) = -KX

Substitution of these definitions into equation (4) yields :
E(k+1) =GE(X) +Hulk) (18}

From which , the Hamiltonian takes the form

AE(K) , UG) , P(X) , k] = 3 [E7{k) Q E() + 0 (k) R G(k)]

+ PT(x+1)[G E(k) + H a(k})]  ..... (19)

Application of maximum condltions produces :

=)
g

= 0 — R[u -u]+H Psl) =0 ... (20)

=]
=
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2 g = P(k) — QE(K) +G' P(k+1) = P(K)  ..... (21)
let P&) =Fk) E® ., F)=0 .. (22)

Then equation (21) wlll be :
P(x+1) = (617! [Fx) - Q} E(X) ... (23)
Thus, from equations (20) and (23) we have :

ulk) = u_ + R™P AT (67 [Flk) - Q) E(x) ... (24)

Now, substitution of equations {4} and (24) intc the defined expression of
the error vector E{k+1) vields :

T

E(k#1) = { G~ HR'H D7 [Fi) ~Q1 YEXK) ... (25)

Equations {22), (23) and (25) can be sclved to find the following expression
of F(k) :

ot Faee))t e L (26)

F'k) =Q + G F(k+1) [I + HR"
Finally. from equations (24), (25) and the defined expression of E(k+1]), the
final optimal control law with the corresponding state medel can be
constructed as :

u’ (k) u_ - &' H (G

'l - FUOYEK) L (27

1 T

X'(k#1) =X - {G+HRH (6)7[Q-FK]}EK ... (28)

which can be easily solved with the aid of solving equatlbn (26) by back
subgtitution.

This technique is applied to the same example of the previous section,
#ith svbstituting :

R = [1] , Q = diagcnal [4,1)

The calculated feedback gins are :

K1 = = 0.71963 . Kz = 0.02912

The corresponding responses are shown in figures (3-¢) and (4-c) for each of
undisturbed and disturbed cases respectively,.
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m CONCLUSION :

Two different approaches are presented for deslgning an optimal position
contrel law for a one-link robotic arm on the base of linearized discrete
model.

Both of the two approaches give good and satlsfactory results when tested
on numerical example for the two cases of undisturbed and disturbed systems.
Each controller has the effect of stabllizing the response of the original
oscillatory uncontrolled system.

Obviously, each approach has some advantages over the other one. But
refering to our analysis and resulis, we can recommend the second one
(Ponteryagin's minimum principle) for more flexible practical application;
and physical realization, moreover for easier theoretical analysis and
design. -
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m Appendix :

From both of linearized state model given by equation (3) and
discretized model given equation (4); we can define :

T

il

G=e K= [ffettatye L. (29)

Q

where : 0 1 a
- o FB= e
1 2

-
i

-A 1
[A-2If=0 — -c, -2 =0
i. e, A%+ C1 =0 —_— hl ., = t Jv C1
Using Cayley-Hamllton method, we have :
Pt = 1 o+ a A A=A, AT L ammges W (30)

o 1 i,2

Substituting A by itg correspeonding eigen values giving :

Wi T : ~WT T
e =a * ] v C1 w . e =0 =] 4 C1 a
From which, we can deduce :
w, = cos VC_T , @ = —— sinV T
. ¥ c1
Consequently, f{rom eguations (29} and (30) we obtain :
N
L @, cos ¥ Cl T ! sinv C T
_ At v C !
G = = = 1
—Cl x, o -V C1 sin v C1 T cos ¥ C‘ T
T 1 -
I sinv C T
T o v C 1
T _At 1
H= [ J e dt ] B = J G{t} 4t B = C2 T
o 0 I cos V C1 T
0 -
C2 1
= [ 1 -cosV S
= 1
sin Vv C1 T
4 C1 |



MANSOURA ENGINEERING JOURNAL (MEJ) VOL.

Parition [rad)

-t

-0

od 4

Poyition [rad)
& o :
w .

&

At

o8

h [
Tims (see.)

0.5 4

a5

pa:ﬁﬁa:n {rad)

ai -

)
Tirma (xec.)

"w

19, NO. 1, MARCH 1994 E.21
io- FoT
2.0 3 }‘ s
-
& -3
& &
§ EYE L0
P ;
2
2-zo L&M
3
&
BTE aar
-0 T T 7 T rN o0 z ¢
Fime fte.) Timae (sec.)
a- Uncontrolled system
g 820 4
008 3
204
= =, 2.0
K £
oo oo
* 3
T ooad
oo i
3 ] -8.08
1.0
=1t
0 I ! =1 T M
Tima (ree.) Tirae (rec.)
b~ Time-Optimal Control
[E a0
4.9 3
- a.0% ]
r =
o4 E
E z
RYYE Ho.oe
2 £
%, R
* a0z 4
o0z 3
e P I 7 7 o008 7 ] T
Time (a20.) Tine {sec.)

Fig. (3)

¢- Ponteryagin's Hinlmum Prlnclple

Undisturbed System Response



E.22

1o JI

bl
Y

Porition. {rad)
=
a

-5

-
-

FPomlion [rad)
2
s

®
=

&0

¥ B B 3 o
Tine (sec.}

o s 8
. : £

powibon (rad)
i
i

L

d

7 ¥ ¥ 1
Tirne {sec.)

Velocity (rad/ecc.}

(X}

g
o

Yeltaolly (rad/sec.}
=
<

=30

= Y
FITTIVIT TRV

Velocity (rad/see.)
o
L

~-&d 4

K. M. SOLIMAN AND A. A. ZAHER

3 1 < 18
Timg (ace.)

a- Uncontrolled system

b- Tlme-Optimal Centrol

c- Ponteryagln’s Hinlmum Prlncipte

Disturbed system Response

¥ ' ] i To

1
Time [rec.)

Fig.(4)

840 4

28z 4

[

o.08

e (Nom)

0.00

To

.85

YIED

=005

e

: 1 H 1
Fime (rec,)

4

L1 F

L

1
Time {asc.}

) b
Time (e}



