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Abstract: he objective of this paper is to obtain an upper bound to the second Hankel

determinant |u,u, — u3| for class of functions F(v) =v+ Y u,v™ involving

n=2

generalized Noor integral operator, which we denote by S} [7; (@i, A1)1.4; (Bi B)1,p)-

keywords Fox-Wright, Hypergeometric, Convolution, Analytic, Integral.

Let A denote the class of functions F(v) of
the form

F)=v+ éz u,v" 1)

which are analytic in the open unit disk
X:={vedl| <1}

By §,C,8*,¢(B) and $*(B) we denote the
subclasses of A consisting of functions that
are univalent, convex, starlike, convex of
order B and starlike of order g in X
respectively( see [5]). For the functions
F () in (1) and

Gw)=v+ f b,y ve X, (2)
n=2

the convolution (Hadmard oproduct) is
defined as

F*HHW) =G *F))

=U+Z u,b,v™"v E X.

n=2
Denoted by d*: A — A the operator
PFQ) = o  F@), ()
A> —1.
This implies that
n-— (n)
dnF(v) = LEONE g

n!

n € Ny = N U {0}.

1.Introduction

The operator d"F(v) is called Ruscheweyh
derivative of n —th order of F(v). Note that
the class d°F(v) = F(w) and d'F(v) =
vT'(v). Recently, Noor [16, 18] defined and
studied an integral operator J,:A > A
analogous to d"F (v) as follows.

Let F,(v) =v/(1 —v)**, n€e€N,, and let
F (v) be defined such that

B+ F ) =2 (5
Then
1. F () = F P () * F(v)

-1

=[] U erw. ®
The operator 7, is called the Noor Integral of
n—th order of F(). We note that
7,F()=vF  (v) and 7,F )=F (v).

Furthermore, it is easily observed that

(n+ 17, F(w) —nd 1 F(v) =

V(In+1F ()" (7)

By using hypergeometric functions ,F;, (6)
becomes
I, F() = [v,F;(L,1;n+ 1,v)] *

F), (8)

where ,F;(a, b; c,v) is defined by

b
,F(a,b;c,v) =1 +a7% 9
a(a+1)b(b+1) v?

c(c+1) 2!

. (9)
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For complex parameters

a.
a,..., (A—‘_;e 0,—1,-2,..;i= 1,..,q>
L

and

ﬁl,...,ﬁp(%qt 0,—1,-2,..;i = 1,..,p).
l

In [4] and [23, 24] defined the Fox-Wright
generalization ,W¥,[v] of the hypergeometric
qFy functions as follows:

(a1,41), ..., (aq, Ag);
J%Lmﬂow”w@%y4
=4 Yyl (@i, A)1,q; (B Bi)1pi v]
_ = ['(a; + nAy)...T'(ag + ndy)v"
- £ T(By +nBy)...T(Bp +nBp) n!

o)

M7, Mai+nap) v*
2o Nb_ T(Bi+nBy) n!’

where a;, 8, € C, A; eR* (i=1,...,9q),
B;eR" (i=1,...,p) and b1 Bi—
;?:1 A; > —1 for suitable values |z|.

(10)

For special case, when A; =1 for i=
1,...,q,and B; =1 fori=1,...,p, we have
the following relationship:
qu(al,...,aq;ﬁl,...,ﬁp;v) =
Q g ¥p[(a, Dig; (B Dipiv], (11)
Nu{0},g<p+1, qpeEN,=
v € X, where

. I'(B1)--T'(Bp)
T T(ap-T(ay)

Now, we introduce a function

(wq¥p[ (@1, A1, (Bis Bi)1p; v]) ™" which
given by

(thpp[(a'i;Ai)Lq; (Bi» Bi)1,p; v]) *
el (@i A 1g; (Bis B)1piv])?

v o A+Dn-1_n

T + nzzz -1 U (13)

1>-1),

and obtain the following linear operator:

D[ (@i, A)r,q; (B B)1p)|F () =

(qujp[(ail Ai)l,q; (.Bi: Bi)l,p; U])_l
*F(v), (14)

where F(v) € A,v € X, and

(12)

(qujp[(ai'Ai)l,q; (Bi'Bi)l,p;v])_l =
o M T(Bi+(n-1)B))

v+
n2=2 ML T(ag+(n-1)4;)

(15)
For some computation, we have

B[ (@i, A 1,q; (Bi B)1p|F (0)
[o.0] p ) _ )
- z Ei:lr(ﬁl + (n—1)B;)

1+ 1)p_qv™

¢ T(a;+ (n—1A,)
A+ Dpoquv™,  (16)

where (u),, denotes the Pochhammer symbol
given, in general, by

I'(u+n)
(u)n = I =
1, n=20 (17)
{u(u +1)..(u+n—-1),n={12,..}

Special cases:

D) To[(LD)11; (L1/(n = 1)1 ]F ) =
F )

(i) [(LD1,05 (L1 (n = 1)1 F ) =
zF' (v).

(i) v[%[(as A)rq; (Bir B)1,p)F )]
= (X + D@ 41,03 Bir B)1p ) F ()
0 [(ai, A)1,q; (Bis B)1,p]F ().

Definition 1 [7] Let F(v) € A then F(v) €
S¥[Ta (i, A 1q; (B B)1p] if and only if

{v[h[(cxi,Ai)1,q;(ﬁi.Bi)1,p]T<v)]’}

92l (@i A)1,q:(BiB)1,p|F(v)
>upu,0<u<l veX. (18)

Noonan and Thomas [15] stated the

q —th Hankel determinant of the functions
F(v) of the form (1) forg =1 andn > 0 as

Un Un+1 7 Un+g+1

Un+1 Un+2 0 Un+ig+2
H,(n) = |. . i .

Untg-1 Un+gq Un+2q-2
(19)

The determinant H,(n) has been investigated
by many authors. For example, Noor [17]
determined the rate of growth of H,(n) as
n — oo for the functions F(v) given by (1)
with bounded boundary, Ehrenborg [3]
studied the Hankel determinant of exponential
polynomials. The Hankel convert of an

Mans J Mathematics Vol. (37).2020



integer sequence and some properties were
discussed by Layman [11].

A classical theorem of Fekete and  Szeg0
functional which considered the Hankel
determinante of F(v) € A for q =2 and
n=1,

Uz

= 2 e

It is also known that Fekete Szegd gave sharp
estimates of |u; —uu3| for u real and
F () € A. The Fekete-Szegd functional has
|lug — pu3| since received magnificent
concern of many authors, specially in
connection with several subclasses of the
class A of normalized analytic and univalent
functions (see, for example, [1], [14], [19],
[21], [22] and [25]).
In this paper, we use the secend Hankel
determinante (q = 2, n = 2) for F(v) € A
U Us
@)=,
The functional |uyu, — uZ| has been studied
by several authors as Janteng, Halim and
Darus [10] found a sharp bound for |u,u, —
u?| where F(v) is the subclass RT of
consisting of functions whose derivative has a
positive real part. Also see ([8],[9]).

Moreover, Let 2P denote the class of
functions p(v) of the form

p(v) =1+ Z c U™
n=1

which are analytic in X and satisfy
R pv) >0 (v eX).

Then we say that p(w)eP is the
Carathéodory functions (see [2]).

We first state some preparatory lemmas,
needed for proving our proof.

2.Preliminary results

The following lemma can be found in [2] or
[20].

Lemma 2 |If a function pk) =1+
Y. c,u™ € P, then

n=1

lc,l <2 (m=123,...).

The result is sharp for

p(v)—l_v— vt
n=1

Using the above lemma, we derive
Lemma 3 If a function p)=1+

Y, cyu™ satisfies the following inequality

n=1
R plv)>u (veX)
for some (0 < pu < 1), then
lenl < 2(1—p) (n=1.23,...).
The result is sharp for
1+0-2wv
1—-v

—1 +z 2(1 — ™.
n=1

p(v) =

Proof. Let

p(v) — - cp
=— =1 n
a@) = +§ i

n=1

Note that q(v)e P and by using Lemma 2, we
have

‘ “ e m=123,..)

1-u

which implies

lc,|l <2(1—p) (n=1.23,...).

Lemma 4 The power series for p(v) =1+

[ee]
Y. c,u™ converges in X to a function in P if
n=1

and only if the Toeplitz determinants

2 Cq Cy Cn
C_1 2 C1 CTL—I

DTL: C_z C—l 2 CTL—Z )
C-n Cont1 Copy2 2

(n=1,23,...), where c_, = c,, are all non-
negative. They are strictly positive except for
p(v) = Y71 pupo(e'v), pp > 0,t, #

tj for m=#j;in this case D, >0 for
n<m-—1andD, =0 forn >m.

This indispensable and sufficient condition is
due to Carathéodory and Toeplitz, and it can
be found in [6]. Libera and Ztotkiewicz
[12],[13] have given the next result by using
this lemma withn = 2,3.

Lemma 5 If a function p(v) € P, then the
representations
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2c, =c + (4 —c?)¢
4oz =ci +2(4—cf)er{ — (4= cf)ei P
+2(4 =)A= [¢1P)n
for some complex numbers ¢ and n (|¢]| <
1,|n| < 1), are obtained.

By virtue of Lemma 5, we have

Lemma 6 |If a function p() =1+
§ cpv" satisfies R p(v) >u (v e X) for
ggrlne u(0 <u<1), then

21—y =cf + {41 — W) — cf¥

4(1 = p)?cs = ¢f +2{4(1 — w)* = cf}eid
—{4(1 - w? - i} P+ 21—
{4Q-w? -3 -1¢1Pn (22)

for some complex numbers ¢ and n(|{| <
1: |77| S 1)'

Proof. Since

v) — C
Q(U)=—p(1)_ “=1+Z — " € P,
n=1

U 1-p
replacing ¢, and ¢; by 1c_—zﬂand 1C_—3# in

Lemma 5, respectivily, we immediately have
the relations of the lemma.

3 Main Results
Theorem 7 Let F(v) €

ST (ai, A 1q; (Bi B)1p]- Then

2(1-21)?
luu, — U—§| < A(A+1)2 (23)

<H?=1 F(ai+2Ai))2 (23)

nY_ T(Bi+2By)

Proof. Since F(v) €
ST (ai A1 (Bi B)1p), it follows from
(18) that
v[%a[(@i A1) 1,03 (Bi B1,p)F )]
D[ (@i, A)r,gs (Bis B)1p | F (W)

=pQ) (24)

for some v € X. Equating coefficients in (24)
yields

= ¢ M T(a;+A4)
2T A+ n?_ TG + By)

_ (eptef) ML, T(ai+24)
3 7 22a+1) NP_ T (B;+2B;)

(25)

B (c3+ §C1C2 + Cz_f) 0L, T(a; +34)
C 3+ DA +2) 1P T(B; + 3B)
From (25), it easily established that
1
T A+ D2(A+2)
0L T[(a; + ADT(a; + 34))] |C1C3
nP_T[(B: + B)T(B; +3B)] ! 3
ctc, c¢f (24 2c,c2+cH(A+2)
2 6 41
;_, [T(B; + BOT(B; + 3By)]
ML Tl(a; + ADT(a; + 34))]

<Hf’=1F(ai + 2Ai)>2
n?_.T(B: + 2B;)

Uy

luuy, — u%l

or
c1C3
luzus —udl = H(ay Ai B B D) |5
ctc, cf (2 +2c,c2+ ) c
2 6 4
where

1
AA+ 121+ 2)
I T[(a; + AT (a; + 34)]
7_ T[(B: + B)T(B; + 3B)]
and
_(@a+72) My_,[T(B; + BOT(B; + 3B))]
A L T[(a; + AT (a; + 34)]
M7 T(a; + 247\’
<Hf=1F(ﬁi + 23i)>
Since the function p(v) is a member of the

class P at the same time, we can suppose
without restriction that ¢; = 0 and take

ci=c (0<c<2) and by using (22)we
derive
luzuy — uil = H(a;, Ay, Bi, Biy A)

H(ai'Ai' ,Bi' Bi'/l) =

Z20-0 [c* +2c2{4(1 — p)* - c*}

—c2{4(1 — w)? = 3% +2(1 — e

(41— pw)? — 231 = 1¢1P)n] + -
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[c* + c*{4(1 — w)? — *}] +
G

—m [C4 + 2C2{4(1 - ,u)z

G

4(1—p)

[e* +e2{a(1 - @) — 2K = -6

— ) -

An application of triangle inequality and
alteration of |{| by p give

luyuy — u| < H(ay, Ay, Bi Bi 1)

l{ 1 (4% — 12u + 9) } .
- Gec
3(1—-w) 16(1—p)?
5 (3-2w
+{12(1 — ) 8(1-p)? G}
2 2 2 C4
{41 —-w*—c M"‘{m

{4(1 - p)?—c*
16(1 — p)?
—c?}p? +2c{4(1 - ) — c?)]
(26)
where0 <c<2and0<p <1.

We next maximize the function F(c,p) on
the closed square [0,2] x [0,1].

Since
OF
6

G C41 2
}—g{ Q-

= F(c,p),

= H(a;, Ay, Bi, Bi, A)

[{12(1 — W 8((31_—25))2 G}

C2{4(1 — ,u)z —c?}+ {m

L - - c}

8(1 — pn)? 3
{41 —w)? — c?}p],
3—2 0 F
MG <?, wehave — > 0.

1-w 5p

Thus F(c,p) cannot have a maximum in the
interior of the closed square [0,2] x [0,1].
Then, for fixed ¢ € [0,2]

max F(c,p) =F(c,1) = M(c)

0=p=<1
M'(c)<0for 0<c<2and has real
critical point at ¢ = 0. Also observe that

M(c) > M(2). Therefore, gna)éM(c) occurs
sCc<s

at ¢ = 0 and thus the upper bound of (26)
corresponds to p =1 and ¢ =0, in which
case

| 22| < 2(1 — )2
Uatle Z U =30 1)2
l'[?le(al-+2Ai)

(H?=1r<ﬁi+23i)) ' 27)

This complete the proof.
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