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Abstract: he objective of this paper is to obtain an upper bound to the second Hankel 

determinant |       
 |  for class of functions        ∑  

 

   
   

  involving 

generalized Noor integral operator, which we denote by   
 
[                       ]. 
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1.Introduction

Let   denote the class of functions      of 

the form  

       ∑  
 

   
   

              (1)  

which are analytic in the open unit disk 

        | |      

By             and       we denote the 

subclasses of   consisting of functions that 

are univalent, convex, starlike, convex of 

order   and starlike of order   in   

respectively( see [5]). For the functions 

      in (1) and  

       ∑  
 

   
   

            (2) 

the convolution (Hadmard oproduct) is 

defined as  

                  

   ∑ 

 

   

     
       

Denoted by        the operator 

       
 

                      (3) 

          

This implies that  

       
              

  
    (4)   

            

The operator        is called Ruscheweyh 

derivative of   th order of       Note that 

the class             and        

         Recently, Noor [16, 18] defined and 

studied an integral operator        

analogous to        as follows. 

Let                         and let 

  
    

( ) be defined such that 

        
    

    
 

   
         (5) 

Then  

         
    

         

 [
 

        
]
    

                (6) 

The operator    is called the Noor Integral of 

  th order of  ( )  We note that 

   ( )=    ( ) and    ( )= ( ). 

  Furthermore, it is easily observed that 

                      
                                         (7)  

By using hypergeometric functions       (6) 

becomes 

       [               ]  
                                                             (8)  

where               is defined by 

                
  

 

 

  
  (9) 

 
            

      

  

  
                   (9) 
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For complex parameters 

         (
  

  
                    ) 

and 

         (
  

  
                    )  

In [4] and [23, 24] defined the Fox-Wright 

generalization     [ ]  of the hypergeometric 

     functions as follows: 

    *
                    

                    
 +

     [                       ] 

 ∑ 

   

 
                     

                     

  

  
 

       ∑  
   

     
 

         

 
   
 

         

  

  
          (10)  

where                             

                     and ∑   
      

∑   
          for suitable values | |  

For special case, when      for   
         and      for            we have 

the following relationship: 

                             

      [                     ]            (11) 

                           
          where  

   
             

             
           (12) 

Now, we introduce a function   

     [                       ] 
    which 

given by 

      [                       ]   

     [                       ] 
   

  
 

           ∑  
 

   

        

      
    (13) 

        

and obtain the following linear operator: 

  [                     ]       

     [                       ] 
   

                     (14) 

where              and 

     [                       ] 
     

  ∑  
 

   

    
 

             

 
   
 

             
               

    

(15) 

For some computation, we have  

  [                     ]     

   ∑ 

 

   

    
              

    
              

 

           
       (16)  

where       denotes the Pochhammer symbol 

given, in general, by 

     
      

    
 

{
                                                               

                         
  

Special cases: 

            [                       ]     

     

             [                       ]     

        

              [  [                     ]    ]
 
 

          [                     ]     

    [                     ]      

Definition 1 [7] Let         then      

  
 
[                       ]  if and only if 

 {
 [  [                     ]    ]

 

  [                     ]    
}        

                       (18)    

 Noonan and Thomas [15] stated the 

  th Hankel determinant of the functions 

     of the form (1) for      and     as  

           |

                               

                           

                                              
                              

|     

(19) 

The determinant       has been investigated 

by many authors. For example, Noor [17] 

determined the rate of growth of       as 

    for the functions      given by (1) 

with bounded boundary, Ehrenborg [3] 

studied the Hankel determinant of exponential 

polynomials. The Hankel convert of an 
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integer sequence and some properties were 

discussed by Layman [11]. 

A classical theorem of Fekete and    Szegö 

functional which considered the Hankel 

determinante of        for      and 

   , 

      |
                  

                  
|           (20)   

It is also known that Fekete Szegö gave sharp 

estimates of |      
 | for   real and 

      . The Fekete-Szegö functional has 

|      
 | since received magnificent 

concern of many authors, specially in 

connection with several subclasses of the 

class   of normalized analytic and univalent 

functions (see, for example, [1], [14], [19], 

[21], [22] and [25]). 

In this paper, we use the secend Hankel 

determinante (       ) for         

      |
                  

                  
|  

The functional |       
 | has been studied 

by several authors as Janteng, Halim and 

Darus [10] found a sharp bound for |     
  

 | where      is the subclass RT of  , 

consisting of functions whose derivative has a 

positive real part. Also see ([8],[9]). 

Moreover, Let    denote the class of 

functions       of the form  

       ∑ 

   

 

   
  

which are analytic in   and satisfy 

                              

Then we say that         is the 

Carathéodory functions (see [2]). 

We first state some preparatory lemmas, 

needed for proving our proof. 

2.Preliminary results 

The following lemma can be found in [2] or 

[20]. 

Lemma 2 If a function        

∑  
   

 

   
   ,  then 

|  |                        

The result is sharp for  

     
   

   
   ∑ 

   

 

     

Using the above lemma, we derive  

Lemma 3 If a function        

∑  
   

 

   
   satisfies the following inequality  

                         

for some            then 

|  |                                 

The result is sharp for  

     
         

   

   ∑ 

   

 

          

  Proof. Let  

     
      

   
   ∑ 

   

 
  

   
    

Note that q( )    and by using Lemma 2, we 

have 

|
  

   
|                         

which implies 

|  |                                   

 Lemma 4 The power series for        

∑  
   

 

   
  converges in   to a function in   if 

and only if the Toeplitz determinants 

   |
|

                                                  
                                                 

                                              

                                                           
                                       

|
|  

                where         are all non-

negative. They are strictly positive except for 

     ∑   
         

              
    for       in this case       for 

       and       for       

This indispensable and sufficient condition is 

due to Carathéodory and Toeplitz, and it can 

be found in [6]. Libera and Z otkiewicz 

[12],[13] have given the next result by using 

this lemma with        

Lemma 5 If a function          then the 

representations  
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{

      
       

                                           

      
        

           
     

 

       
     | |   

      

for some complex numbers   and    | |  
  | |    , are obtained.  

By virtue of Lemma 5, we have 

Lemma 6 If a function        

∑  
   

 

   
   satisfies                   for 

some            then  

           
             

    

            
              

      

            
     

         

           
     | |       (22) 

for some complex numbers   and   | |  
  | |       

Proof. Since  

     
      

   
   ∑ 

   

 
  

   
      

replacing     and    by 
  

   
  and 

  

   
  in 

Lemma 5, respectivily, we immediately have 

the relations of the lemma. 

3 Main Results 

Theorem 7 Let       

  
 
[                       ]   Then 

|       
 |  

       

       
          (23) 

(
    

 
         

 
   
 

         
)
 

  (23) 

 Proof. Since       

  
 
[                       ]   it follows from 

(18) that 

 [  [                     ]    ]
 

  [                     ]    
 

 

                                                 

 

for some       Equating coefficients in (24) 

yields 

   
  

     

    
         

    
         

 

   
      

   

       

    
 

         

 
   
 

         
               (25) 

   
    

 

 
     

  
 

 
 

            

    
          

    
          

  

From (25), it easily established that  

|       
 |  

 

            
 

    
  [                ]

    
  [                ]

|
    
 

 

 
  
   
 

 
  
 

 
 

   
       

    
       

  
 

    
 [                 ]

    
  [                ]

 

(
    

          

    
          

)

 

| 

or 

|       
 |                  |

    
 

 

 
  
   
 

 
  
 

 
 

   
       

    
  

 
 | 

where  

                 
 

            
 

    
  [                ]

    
  [                ]

 

and 

  
     

 

    
 [                 ]

    
  [                ]

 

(
    

          

    
          

)

 

 

Since the function       is a member of the 

class   at the same time, we can suppose 

without restriction that      and take 

             and by using (22)we 

derive 

|       
 |                   

|
 

       
[                    

                          

               | |   ]  
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[                  ]    
  

 
    

 
 

        
[                

       ]   
 

      
 

[                 ]  
  

 
 | 

An application of triangle inequality and 

alteration of | | by    give 

|       
 |                   

*,
 

      
 

           

        
 -    

 {
 

       
 

      

       
 } 

                ,
  

       
 

 
            

        
 -  

 

 
         

       
 

 
             ]            

(26) 

where       and        

We next maximize the function         on 

the closed square [   ]  [   ]  

Since  

  

  
                  

[{
 

       
 

      

       
 } 

               ,
  

      
 

 
            

       
  

 

 
- 

             ]  

      

     
  

  

 
                 

  

  
    

Thus         cannot have a maximum in the 

interior of the closed square [   ]  [   ]  
Then, for fixed   [   ]   

   
     

                     

          for        and has real 

critical point at       Also observe that 

            Therefore,    
     

     occurs 

at     and thus the upper bound of (26) 

corresponds to     and    , in which 

case  

|       
 |  

       

       
 

(
    

 
         

 
   
 

         
)
 

  (27) 

This complete the proof.    
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