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Abstract

A voluminous amount of disturbance waveforms are captured and recorded by power quality survey projects. These
disturbances need to be automaticalty classified and characterized to provide informative and useful results about the power
guality condition of the system. Intensive research is conducted o accomplish efficient automatic classification tools.
There is still a notable scarcity in apt techniques for characterization or quantification of disturbances. In this paper. a
scheme based on discrete wavelet transform and neural networks is proposed to characterize the recorded power quality
disturbances. A routine is presented to compute the disturbance duration. A dedicated neural network is used to estimate the
duration-magnitade product of the disturbance. The design and structure of the neural estimator is addressed. An alterrative
scheme for designing the estimator is also proposed and described. The performance of the two methods is tested with many
distuthances of 6 different types. The results are compared to select ihe best estimators relevant to each disturbance type.

I .Introduction voltage and current time-series which bring a
wealth of information about each power quality
event. They are useful to conceptualize the
process of power quality disturbances and to
find their causes[2]. The existing methods to
analyze and identify power disturbances are
primarily based on visual inspection of the
disturbance waveforms. The power-quality
engineer’s knowledge plays a critical role, and
many times, the power-quality engineer is
swamped with an enormous amount of data to
inspect. Manual sifting of recorded PQ
disturbances is very tedious and time
consuming. Thus, it is desirable to develop
automatic methods for detecting, identifying.
and analyzing various disturbances [3].
Advanced tools for the computerized analysis

The proliferation of power electronic devices
and nonlinear loads in electric power networks
has triggered a growing concern for power
quality issues from both utilities and power
users. The opening of power markets,
deregulation and restructuring of the electric
power industry is further accentuating the
interest in the quality of the electric supply{l1].
Power quality (PQ) phenomena are investigated
directly from actual recorded disturbance
waveforms thanks to widely avatlable power
monitor equipment. Furthermore, Manufacturers
are infegrating power quality monitoring
functions in their products such as power
meters, digital relays and event recorders. These
disturbance recordings are stored as three-phase
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and classification of power-quality disturbance
are currently available [4]. However, since the
correct classification rate for the actual events is
not as high as classification methods used in
areas such as pattern recognition, speech
recognition, and so on, there is still room for
improvement [3]. Power quality study have
several aspects including [1-3]: 1) Sensitive
detection of power disturbances, 2)
Identification of the types and causes of power
disturbances, 3) Quantification of the extent of
power disturbances (or waveform distortions)
and their negative impacts on power systems, 4)
Real time measurement of the parameters of
signal components in power disturbances, and 5)
Locating the sources of power disturbances in
electric power networks. The first two objectives
are verified using many recently reported
techniques [2-6]. The third aspect above can be
fulfilled using PQ indices, which are the concise
numerical representations characterizing the
nature of a PQ event based on the time and/or
frequency information of the disturbance
waveform. PQ indices also serve as the basis for
comparing the negative impacts of PQ events on
power systems/customers in a quantitative
manner. On the other hand, it is essentially
requested to estimate the magnitude and
duration of the PQ disturbances for their
ranking, severity assessment and for giving
more insight into the electromagnetic
environment of the survey site as indicated in
aspect no. 4, There is still a notable lack in
technical information and reported research
exploring this task. However, in [7, 8],
characterizing the signal is done by monitoring
the standard deviation of discrete wavelet
transform (DWT) coefficients at different
resolution levels. The method is applied
specifically to estimate the magnitude of voltage
sag disturbances. In [9], a DWT-based method
is presented to determine the duration of
transitory P{Q disturbances such as impulse and
oscillatory transients. We have not found yet a
reported approach that is generally able to
estimate, even approximately. both the duration

and magnitude of recognized momentary PQ
disturbances.

In a preceding paper [10], the authors presented
an algorithm for classifying the recorded PQ
disturbance signals acquired through the PQ
monitoring stage. It is based on performing
DWT muiti-resolution analysis of the signal and
using the standard deviation pattern of the DWT
coefficients at the different levels as the source
of extracting the feature vector. By using a
dedicated neuro-fuzzy classifier, the recorded
disturbances are classified into different
disturbance types. Nevertheless. no information
about ranking the disturbance cases within each
category or expressing their relative severity is
provided. This hinders the production of a more
helpful PQ survey report providing information
about the types of existing PQ problems as well
as their determinant characteristics, e.g..
magnitude and duration. The targeted PQ survey
report will portray the PQ status of the
monitored system more clearly.

In this paper, a scheme is proposed to extend the
algorithm given in [10] to provide the magnitude
and duration of the PQ disturbance in addition to
its type. The scheme is based on the artificial
neural networks (ANNs). An ANN is
constructed to estimate the disturbance
magnitude for each type. The time duration of
the disturbance is computed from the recorded
time samples of the signal. Moreover, an
alternative approach is also proposed to estimate
the disturbance magnitude. It is based on the
difference between the standard deviation
pattem of the DWT coefficients of the
disturbance signal and the pure sinusoid
template. The two methods are described and
their characterization capabilities are compared.

I1. The Proposed Scheme

The recorded power quality event signals
obtained from the PQ survey phase are assumed
to have a time span of 18 fundamental cycles
each. Also, the first cycle in the captured signal
is assumed to be distortion-free. The proposed
generalized power quality problems
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characterization algorithm is described as given
below.

A. Duration time estimation

The duration time D of the disturbance can be
defined as the time interval for which the signal
is deviated from its normal steady state
conditions. As the voltage waveform is typically
sinusoidal with fixed amplitude and frequency,
any violation to this template is considered a PQ
disturbance. This event is captured by PQ
monitoring instruments. The recorded event
signals have usually a fixed time span. D is
typically included within this time span as a
fraction of it. The parameter D s estimated
from the recorded time-domain signal as
foliows:

1. Fast Fourier transform (FFT) is used to
obtain the fundamental frequency
component of the stored event signal [2].
Then, the signal is normalized by
dividing each sample value by the peak
fundamental value.

2. To focus only on the features of the
disturbance, fundamental frequency
component is subtracted from the
normalized signal to give the normalized
mere disturbance signal (NMDS) [10,
I1). Ideally, NMDS will have zeros out
the disturbance region in overall time
span. It is required to explore the start
and end positions of that zero values of
the NMDS,

3. To have only positive values for the later
signal, the values of its samples are
squared. As a result, the very small
sample values becomes infinitely smaller
and the large sample values are more
enlarged. This facilitates specifying the
start and end points of the disturbance.

4, Starting from the time sample number
one and going ascendingly, each sample
value is compared against a certain
threshold level taken as a fixed ratio of
the maximum value of the NMDS. The
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{ist sample whose value will exceed the
threshold is marked as the disturbance
start point T, Then comparison is
stopped.

5. Starting from the last time sample
(number N) and going descendingly,
each sample value is compared against
the threshold level. The fist sample
whose value will exceed the threshold is
marked as the disturbance end point T,
and comparison is stopped.

6. The disturbance duration D is determined
as:

D=T,-T, %)

7. As a by-product, mean square value
{power) of the NMDS Pyups is calculated
to express how much the magnitude is
deviated from the normal conditions.
This value will be used in the magnitude
estimation algorithm.

The above technique is depicted by the diagram

given in Fig. 1
NMDS
Compution
Squared NMDS
faq)

Fig.l Schematic of duration computation algorithm

Table 1 shows the results of computing D using
this method when applied to 6 different
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disturbance examples depicted in Fig.2 It is duration-magnitude product (DM) of the
evident that the estimated D is very close to its disturbance signal.

true value with high accuracy. This ensures the 4. Since the duration D is determined as in
validity of the given method in estimating the the section A above, the disturbance
disturbance duration. magnitude M can be computed.

Method 1 is revealed schematically in Fig.3.
Fig.4 from top to bottom shows an example of
applying this algorithm to a sag signal.

Disturbanco signal
r
[ ]
4
HMDS
Compuiaion
Fig.2 Disturbance signals examples
i
Tablel Duration calculation for exampie disturbances A Duration
- Detecton
Fig.2 T; (5) Tels) D (s) true D SwTastA Asgarithem
(a) 0.040 0.304 0.2639 0.27
[ 0.040 0.308 0.2679 0.27 D
© | 0.081 0304 | 02230 | 022 .L it ool
(9 | 0043 | 0046 | 00028 | 0.0026 Bk e '
(&) 0.166 0.170 0.0043 | 0.0043 calculation coethickents b
{f) 0.1512 | 0.1518 | 0.0006 | 0.0006
: ANN
B. Magnitude estimation Qross Pty vecer || STV LT [
1. Method 1
1. The Debauchee mother wavelet "db4" is T
adopted to perform the multi-resolution ' c {

analysis MRA of the NMDS up to the
12" level at a sampling rate of 256
sample points per fundamental cycle [12,
13]. Then, the standard deviation of the
DWT coefficients of each level is
computed yielding 12 parameters for
each signal [7, 8].

2. A feature vector of 13 elements length,
the later 12 standard deviations beside
the power Pyups, 15 assembled as the
gross candidate feature vector.

3. According to the disturbance type
decided by the classification algorithm, a
dedicated artificial neural network
(ANN) is triggered to estimate the

Fig.3 Schematic of the proposed algorithm with method].

2. The alternative Method (Method 2)

I. The Debauchee mother wavelet "db4”
is adopted to perform the MRA of the
normalized event signal up to the 12"
fevel and at a sampling rate of 256
sample points per fundamental cycle.
Then, the standard deviation of the
DWT coefficients of each level is
computed yielding 12 parameters for
each signal.
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2. The Debauchee mother wavelet “db4" ‘ proluioigll [ iriney
is adopted to perform the MRA of the T
normalized fundamental  waveform ot et oo Sharmcuritics
computed in step] of section [L.B.1 up
to the 12" Jevel and at a sampling rate DM
of 256 sample points per fundamental P
cycle. Then, the standard deviation of

the DWT coefficients of each level is o
computed yielding 12 parameters for E Fr——" —I—'F"""L:l_' Erpmom
the fundamentat signal.

3. The standard deviations of DWT
coefficients of normalized event signals
obtained in step] above are subtracted Fig.5 Schematic of the proposed algorithm with method 2
from their counterparts of the
fundamental signal obtained in step 2.

4. A feature vector of 13 elements length,
the later 12 standard deviations
differences obtained in step 3 beside the
power Puuos, is sclected as the
candidate gross feature vector,

5. According to the disturbance type L e =

decided by the classification algorithm, E‘;-M—; S -.' o
a dedicated artificial neural network o .
(ANN) is triggered to estimate the [ Sm— ‘——“~—‘!."""+r P
duration-magnitude product (DM) of

the disturbance signal. Fig .6 Example of applying method 2 to a sag signa).

6. Since the duration D is determined as in ) )
section IL.A above, the disturbance 1. Developing the Neural DM estimator

magnitude M can be computed. A. Training and testing data

’ A large number of disturbance signal examples
Method 2 is revealed schematically in Fig.5. are needed to construct and test the ANN DM
Fig.6 from top to bottom shows the steps of estimator. 25 examples of each disturbance class
applying this algorithm to a sag signal. are generated by simufating the model power

system of Fig.7 using ATP/EMTP software.
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This power system consists of 13 buses and is
representative of a medium-sized industrial plant
fed by a utility supply at 69 kV. It also has a
local generator (G!) operating at 13.8kV,
transformers, lines, capacitors and loads [14].

3

ey
T

There are 6 transient disturbances concerned
in this study as section [IL.LB blow. The start
instant, duration, and magnitude of
electromagnetic disturbances in power system
are random and range widely. Any targeted
ANN estimator should have been trained with
adequate amount of the possible versions of the
«disturbance waveforms to be able to give its DM
product correctly [11-13]. 25 example
waveforms of each disturbance that cover its
expected range of variation are generated
assuming different operating conditions and
parameter values.

FE
T ot

Fig.7 Model power system

B. Structure and Training

Six disturbance types are considered in this
paper which are sag, swell, outage, notch,
impulse and oscillatory transients. For the first
three types, the term magnitude (M) is defined
as the absolute difference between the peak
values of the signal before and during the
existence of the event. Whereas, for the latter
three types, M is defined as the difference

between the maximum value of the signal during
the event and its corresponding normal value.
ANN DM estimator is to be designed and
dedicated for each disturbance class. The input
vector to the ANN DM estimator is selected
from the 13-element gross feature vector
described in section ILB. Three candidate
groups of input vector are compared as inputs to
the ANN DM estimator. The first is a 3-element
input vector composed by summing up each 4
subsequent values of the 12 standard deviations
(of the DWT coefficients of the 12 resolution
levels ). The second is a 4-element input vector
which are the previous three elements besides
the power Pyups. The third is a 12-element input
vector which are just the 12 standard deviations.
The ANN estimator used is a three-layer feed
forward ANN with only one output neuron for
the DM value [15]. The number of the hidden
layer neurons are provided in Tables 2 and 3, for
method 1 and method 2 respectively. The
transfer function of the hidden layer neurons is
taken as "tansig” and that of the output neuron is
linear. The adopted training algorithm is
Levenberg Marqurdat technique due to its
reported efﬁcacy [15). The target training error
is set as 10” and it is met in less than 600
training epochs for all cases. This was enough
for the ANN DM estimator to recognize the
DM of the training examples with 100%
efficiency.
Table 2 Training information of method 1

No. of inputs 3. 4.4 12
Type No. of hidden neurons
sag 85 150 80
swell 70 150 60
outage 65 70 82
notch 58 90 60
impulse 75 100 70 |
oscillation 100 | 60 90 |

C. Testing results and comparison

The proposed PQ disturbance characterization
schemes are tested to estimate the duration and
magnitude of various sets of previously unseen
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Table 3 Training information of method 2
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disturbance  types. The swell is  best

| No. of inputs 3 (41 12 characterized by method 2 with 3 input ANN
Type No. of hidden neurons estimator. Whereas, the notch is best
sag 85 160 80 characterized by method 2 with 12 input ANN
swell 70 150 58 estimator. The best ANN DM estimators are
outage 65 70 82 | corresponding to the highlighted cells as shown
notch | 56 | 90 60 in Table 7. _
impulse 76 95 70 Table 5 Sumrmary of test result for 4 inputs
[ osciliation | 70 | 50 | 80 | Meod1 | Method2
. . . ? i s|Bl &
disturbance signals of the & different classes. o 5 2|28
) : . N Typeof | B IE| S o | E[El S
The disturbance duration D is determined via the diswroance | &£ | 1 2% | g § 2 °
duration estimation routine presented in section o || w = w
H.A The algorithm given in section IL.B is sag 8 |0 i00 | 7 [t] 8 |
followed to obtain the proper input vector. Then, swell 6 (1| 8 [6]1] 8
the ANN DM estimator is resorted to provide [ outage 9 {0 100 /9 |0 100
the product DM. For evaluation purpose, the ; .:"‘flh g g ]7010 ; g l?olo
case is considered to be correctly characterized LO'EEN?: — =T 5 sl ce
|f t}.le EIT‘OI' in the estimated DM is within 20% ___Totai 45 | 4 o188 | 42 | 7| 85.7
limit of its actual value. For the two schemes,
the three, fo;u' a“‘}i] t\;_elve-gnput A}\IN DM Table 6 Summary of test result for 12 inputs
estimators of eac isturbance class are
. . thod Method 2
compared as illustrated in Tables 4, 5 and 6, Method 1 - o
respectively, 'a_\ & s | 8l
Type of g g Be| B E S e
. o oe o °
Table 4 Summary of test result for 3 inputs disturbance 5 c|E S| 2 =
f
%‘ Method 1 Method 2 g | 5 | 3 | 65 | 414 50
1= swell | 5 | 2 | 71| 5] 2| 7
Typeof | 8| 8| 5. g g %‘ . outsge | 9 | O [ 100 | 8 | 1 | 8838
disturbance | 5 | 8 ex15lgteg & notch | 5 | 2 | 714 | 7 | 0 | 100
@l ELE Al = impulse | 8 | | | 8 | 9 | 0 | 100
oscillation | 6 3 66.6 ] 3 66.6
| oy g ° '8%0 ; : 8,;3 [ Total | 38 | 11 | 77.6 | 39 | 10 | 7196
outage 5 | 0 | t00 | 9 | 0 | to0
| notch 4 3 57 6 1 36 The proposed two methods can be used to
impulse 9 | 0 100 | 9 | © 100 characterize  adequately the 6  studied
oscillation | 5 | 4 L 355 6 | 3 | 666 disturbance types. In general, method 1 with 4
Total 41 | 8 (837 |44 ] 5 | 898 input ANN DM estimator can be recommended

Table 7 summarizes the overall results of the
two methods. it is noticed that method 1 with 4
input ANN DM estimator gives the best global
performance for the whole test cases in the
different 6 disturbance types. It yields 100%
accuracy in DM estimation for 3 types of the 6
disturbance types. However, this scheme is not
the best in estimating DM for swell and notch

as the superior technique for PQ disturbance
characterization. This is because, besides ifs
efficacy, the required 4 inputs are the same
effective inputs used in the earlier stage for
disturbance classification [10]. This will greatly
reduce the computations needed to characterize
the disturbance after its classification (¢ a minor
amount.
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__Table 7 Comparison of results in terms of estimation efficiency (%)
s
BT g R e e
o
| 12inputs | 66.6 | 87.5 | 714 | 100 [ 63.6 [62.5]77.5
Method 1 | 4 inputs 89 100 71 100 86 | 100 | 91.8
_“_j inputs 35.5 100 57 100 86 100 | 83.7
12 inputs | 66.6 100 100 | 888 | 636 | 50 | 79.6
LMethodZ | 4inputs | 66.6 | 100 | 71 100 | 89 | 89 [857
| 3inputs | 666 | 100 | 86 | 100 [ 100 | 89 | 89.8
Table 8 Performance of best DM estimators for test cases
sag swell outage nolch impulse Oscillations
MI1-dinputs M2 -inputs M1-dinputs M2-1Zinputs M1-dinputs M1 -4inputs
A E A E A E A E A E A E
14 (16673 | 218 [203( 765 [77.5597 | 1.223 | 1.2378 | 4.7016 | 4.7589 | 0.4492 | 0.4669
288 [ 25351 | 4991 | 51.4] 76.7 | 78.2476 | 1.7531 | 1.8247 | 4.8399 | 4.8735 | 0.4758 | 0.449 |
37 | 356 | 5739 [ S6.1[ 76.9 | 78.8742 [ 0.35938 | 0.3155 | 3.0546 | 3.0853 | 0.1969 | 0.1969
40.7 | 407 [ 7552 [77.3] 86.6 | 89.3289 [ 0.09141 | 0.0968 | 3.4277 [ 3.1555 | 0.1781 | 0.1849
494 14195780933 [838.2[ 110 | 109.378 | 0.64687 [ 0.7018 | 4.425 | 4.4049 | 0.5344 | 0.4337
73418 | 72.804 | 88.563 [ 91.5 [ 146 | 145.806 [ 0.69531 | 0.722 | -5.859 | -5.986 | 0.5859 | 0.4933
73.6 | 72.525] 89.89 | 89.8 | 176 | 175072 | 0525 |0.5251 | 5.338 | 549 |0.60157 | 0.7834
72.95 [70.092 | 61.24 [ 603 | 176 | 173.567 | 1223 | 1.2378 | 3.6118 | 3.5852 | 0.74998 | 1.574
64.2 | 57.7 | 39.4 |41.2]21958 [ 217.88 [ 1.7531 [ 1.8247 | 6.0938 [ 7.7829 | 1.1812 | 1.1077 |

A: actual, E: estimated, M 1:method 1, M2:mthod2

Table 8 provides the detailed test results of the
best ANN DM estimators. 9 test cases are
considered for each disturbance class. The
duration D is expressed in milliseconds for the
given DM values. The negative DM value for
the impulse refers to an impulse that occurs
during the negative half cycle (downward
impulse).

IV. Conclusion

Two methods for designing and developing
an ANN duration-magnitude product estimator for
PQ disturbances are proposed and analyzed.
These methods are based on DWT multi-
resolution analysis for feature vector extraction
and ANN for prediction. A dedicated routine
has been presented to compute the disturbance

duration using the recorded time samples. Three,
four and twelve-input ANN DM estimators have
been formed and compared for the two proposed
schemes. The best estimator structure for each
disturbance class is reached. The 4-input ANN
DM estimator produced according to method | is
the best overall DM estimator. It has the
maximum prediction efficiency for most of the
disturbance classes. Moreover, the used 4-inputs
are the same inputs used in the preceding
disturbance  classification  procedure.  The
presented technigue can assist in automatically
preparing more informative power quality survey
report that indicates both qualitative and
quantitative assessment of the recorded PQ
disturbance signals.



Mansoura Engineering Journal, (MEJ}, Vol. 32, No. 3, September 2007.

V. References

{1

2]

[4)

(5]

(6}

{7

(8}

Tao Lin and Alexander Domilan” On
power Quality Indices and Real Time
Measurement” IEEE Trans. On Power
Delivery, Vol.20, No.4, Qctober 2005,
pp.1-11.

Surya Santoso, W. Mack Grady, Edward
). Powers, Jeff Lamoree and Siddharth C.
Bhatt "Characterization of Distribution
Power Quality Events With Fourier and
Wavelet Transforms,” IEEE Trans. On
Power Delivery, Vol.15, No.1, January
2000, pp. 247-254.

T. X. Zhu, S. K. Tso and K. L. Lo, "
Wavelet-Based Fuzzy Reasoning
Approach to Power Quality Disturbance
Recognition,” IEEE Trans. On Power
Delivery, Vol.19, No.4, October 2004,
pp.1928-1935.

Wael R. Anis Tbrahim and Medhat M.
Morcos. "Artificial Intelligence and
Advanced Mathematical Teols for Power
Quality Application :A Survey," IEEE
Trans. Cn Power Delivery,Vol.17, No. 2,
April 2002, pp.668-671.

M. S. Kandil, S. A. Farghal and A.
Elmitwally. "Refined Power Quality
Indices,”" IEE proc. On Generation,
Transmission, and Distribution, Vol.148,
No. 6, pp.590-596, Nov., 2001.

H. M.S.C.Herath,Victor J. Gosbell and
Sarath Perera” Power Quality Survey
Reporting: Discrete Disturbance Limits”
[EEE Trans. On Power Delivery, Vol.20,
No.2, April 2005.

AM. Gaouda , MM.A. Salama and
M.R. Sultan,"Automated Recognition
System for Classifying and Quantifying
the Electric power Quality," IEEE PES
summer meeting, 1998, pp.244-248.

AM. Gaouda, M.R. Sultan and
A.Y .Chikhanni, "Power Quality
Detection and  Classification Using
Wavelet-Multiresolution Signal

Decomposition," IEEE Trans. On Power

9

[10)

{1}

(12}

(13]

[14]

(13]

E. 25

Delivery , Vol.14, No.4, October 1999,
pp. 169-1476.

Angrisani L., Daponte P., Apuzzo M.
and Testa A., “A Measurement Method
Based on the Wavelet Transform for
Power Quality Analysis,” [EEE Trans.
On  Power Delivery, Vol. 13, No. 4,
1998, pp.990-998.

A. Abdelmageid, A. Elmitwally and S.
Fathy,”A Generalized Approach for
Automatic Recognttion of Power Quality
Disturbances,” the Internatiortal Joumal
of Distributed Energy Resources, 2007,
in press.

Zwe-Lee Gaing, “Wavelet-Based Neural
Network  for  Power  Disturbance
Recognition and Classification," TEEE
Trans. On Power Delivery, Vol.19, No 4,
October 2004, pp.1560-1568.
B.perunicic, M.Mallini, Z.Wang,Y.liu
"Power Quality Disturbance Detection
and Classification using Wavelet and
Artificial Neural Networks,” IEEE, PES
summer meeting ,1998, pp.77-82.

W,  Kanitpanyacharoean and  S.
Premrudeepreechacham, "Power Quality
Problem Classification Using Wavelet
Transformation and Actificial Neural
Network,” TEEE , PES annual meeting.
2Q04.

Daniele Castaldo, Alessandro Ferrero,
Simona Salicone, Alfredo Testa, "A
Power-Quality Index Based on Multi-
point Measurements” JEEE Bologna
Power Tech conference 2003, June 23-
26, Bologna. Italy.

Howard Demuth and Mark Beale,
“Neural Network Toolbox User's
Guide”, The MathWorks, 1998.






