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ABSTRACT

Both Catastrophe theory and the Hopf bifurcation
heorem can be applied to the study of the stability of
synchronous generators connected to power systems, when
subjected to small disturbances,

The Hopf bifurcation theorem can be used to determine
the stabillty of the produced orbits of oscillation which
indicate the stability state of the syanchronous machine,
here treated first as a second order problem and then by
including the governor response.

fCfatastrophe theory usefully visualises the stability
problem by deriwving the approp riate catastrophe manifold.
In this paper this is shown to be a "butterfly"” manifold,
after taking into account the described conditions.

INTRODUCTION

The possibility of using catastrophe theory for
synchrenous generator stability predicticn under the effects
af small dlsturbances (the steady state) has been discussed
in a previous paper by the authors.{1l]

In additlon to the wisuallsation effects so attractive
Lo the power system engineer, catastrophe theory cffers a
useful gualitative analysis. Hopf bifurcation theorem
usefully extends the gqualitative analysis and give ind-
ications of the stability of produced closed orbits of
osclllation for nonlinear engineering systems. It is essen=-
tially a study of the dynamics of variation of the state

s 3

variables and the control parameters under appropriate cond-

itlens, using analysis of bifurcation and the probability
of occurence of aorbits of flow induced oscillations.
One of the wvery useful results seen in bifurcation
analysis is the role of positive or negative damping
t =

coefficient Damplng ls taken as a blfurcation parameter,
leading to determination of the stability boundary for given
valuas of damping coefflicient. The equilibrium point giving
closed orbits of oseil tion determ_nes the system stability
under small disturbance effects,
Whilst the theoretical background [2,3) cannot be sim-
fied, the psper presents it in a form appropriate to
: 5 power system studies and then proceeds to ille
fects by numerical examples.
of the paper deals with the bifurr
theorems (Cazntre~manifold and Hopf bifurcation tr
Their applications are illustrated in Secticn 2 w

L




.10, A.A.SALLAK & J L. DINELEY .

the stability of a synchronous ganarm: first as a 2nd,
order model, then ﬁt’ﬁaﬁ it to a thirdorder :mmnt{un by
taking into aceount governor effects usimﬁ‘ one time lag.
Section 3 illustrates the developement of the application of
catastrophe thnnrg to power system stnbn{ty when it hu-.
been visualised by three dimensional plotting te produce a

mtmﬂr muuﬁ ?aﬂmz with its hﬂummn set in E#m

of the simple cusp inani fold «
in the n:amm paper. It takes into account the effects of

ifff"’ power, synchroncus and asynchronous power , and
eney.
in sections 2 & 3 a numerical example has besn given

for each case, The ﬂml conclu-sions are prﬁtuut@d in
Section 4.

amic stability

porta kil ;
pnﬁhm concernin: hnhi.iuﬂ:ut:{xn e:E nquf,' rimw stnm
For th.st purpose, it is useful to ensure & the bifurcated
equilibria lies on ,hwuinnt mani: nH of ﬂtmlqna for
the im dynamical problem. Then f}y atabllity
hammﬂr};uéstmn en tha innﬂnat manifold M (centre

T : Eo] '-\“"‘153
his 1 so called," Reduction !ﬁunruﬂ as it
.qedﬂﬂ&s th- ptghilﬂu to a finite dimensional yrﬂhlnm, the
Statement then ls :
~ Let y be a mapping of & neig hbourhood %Inm in a
Banach space z inte 2. We assume ttut ¢ is e®) k> 1 and
*hha,l: $t0I=0. We further assume that Dy(0) has spectral
radius 1 and that the spectrum of DyO0) #pf;kuqt ito a part
,on the unit circle, the remainder which £ qu A non-zero
“distance from the unit circle, Let Y denote the generalized
esigen-space of DW0) belonging to the ﬁui: uf ',:;m :;uutrm
on m unit circle; assume that ¥ has dim

Then there exists a nulghhuurhwé 3?. u£ !n z ani! a &
submanifold M of V,of ‘dimension d, passing through 0 and
ungann to ¥ at 0,such nr.h:us g*;_chg mu‘ﬂuq}' if x=H
and y (X)EV,then Yixles ;

bi*local nt.ﬂ*act:t»rlty* 1E wﬂt {Eﬂ: atl

n=0,1,2,..., then, as n —= "';thi aisﬁmm %) to M
goes to zero.

This reduction to & centre i\;ﬂﬂqlﬁ M ‘uith’&nt any loss of
intnwﬁm concerning stabi ta &:

RARERITS sl

‘Let )
such t.tﬂi-
tQ.Bl HIN'&
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a'l there is a ¢f-2functiaon u:l-¢,e) — R such that (xy,04
H la on rglnﬂ:& orbit of ﬁgtiﬂﬁ N2r /|3 HHL nﬂ n us
ike of % for “tt nn:lr the :
ﬂwn 5 2 nﬂi.a;hhuurhmd of 10,0,0) in uim t‘.ﬁﬁt
:cimni orbit in U is one of mu a.bwm Further, if 0 is 1
“yague attracter” for Xy then i
:lutxﬂ >0 for all x;# 0 and the orbits are ﬂmuﬁiugt

1,2:8: La
Let W bs Y hiel nn:“ ntﬁu-uu ti; :
assumptions of the thecrem in holdin ™
assumption that the rast of the iymrtﬂ% #H n&l‘: y
the two assumed simple eigenvalues X i_&-
on (a) is true, Conclusiaon tb) is uua if the 3.' of g1y —i

apeuuw remains in the laft half plane as W crosses iaﬁ#.
Conclusion (c) is true if, relative to Afu), X Uul, 0 is
"vague attractor® in the same sense &5 in the ﬁhe’rum in.
and 1f,when coordinates are chosen 8o that

0 jacoy)  dxto)
ax (o) =| -jato) o axio)

-
0 0 &3; tu_:.

and xE0) %n‘tdaxs L0y}

applications, the most interesting consequence of the }

.thmm: is thes central significance of the eigenvalues on
‘the lma inary axis Where the nonlinear beshaviour of the
‘system is essentially unfolded through these eigenvalues
_'theratnu, the determination of surfaces in the control
‘space where one or more eigen - valuas cross the imaginary
‘axis whieh may be obtained tn’&,}rtiun;ly is of lar n
importance inm studying the behaviour of nonlinear systes
When more than two sigenvalues cross the !.nngmnr{ axis
non-zero speed,the bifurcational behaviour analysis is ht!.,u
incomplete, but it is nqulh:wa using tﬁumtﬂqram ta
ntw the effect of ;m ry mnnaﬁu-l on stability.

then : us+na=~*p -p §ing
By aai:pg:minq this eqnnt.i.nn as the vector field X (§,0) on R2

We NAVE  ju and d=c-b Sin +aw
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where, c=H /M , a=-D/M , b=R /M > 0
The system has two eguilibrium points (Gl,uFO) and (% , w=0)

where
61~Sln (c/b) and éz»n—él

but in case of a power system, the operating point is
normally at 0<8< /2 , so we are concerned w1th6 = siml
{c/b) at ub—G as the system egquilibrium point. Taklng a,
which is a function of damping coefficient as a bifurca-
tion parameter, then

X (6 u) {w,c~b Sind + aw) and
Xak51n (c/b) Q) = (w,aw) = (0,0) for all a.
At the equilibrium point;
. =1 0 1
= ) = o
4%, §,.6p) = 9%, (Sin™ (e/b),0) [&/b 5 }

With eigenvalues -

2 7
A= % ij_/iE%3~ where N=Jg§—c‘ and must be positive.
Also,
Sofens a))' =%>0, i.e. the eigenvalues cross the imagin-
da a={Q ary axis at non-zero speed,
and for
-2/N <ac< 0 Re(xa) < O
= 0 Re(xa) = 0
0 <ac< 2/N Re(Az) > O

Therafore, the Hopf bifurcatlon thecrem is seen to apply and
it is concluded that there is a2 one parameter family of
closed orbits of X=(8,,0} ip a neighbourhood (8,,0,0) .

According to Hopf’erurcation theorem, in case of a< 0
(the damping coefficient Ls posi-tive! the origin is attrac-
ting or as it is sometimes called asymptotically stable
{sink point), and for a=a_=0 (the damping ls negligable) the
bifurcation has occured. The closed orbits must be known if
they are stable or not by calculating V''{0! as below {ref.G,
section 4, pp.l04). In the case of a >0 the origin iz a
source point and the aystem is unstable, fig.(l)

Generator damping is represented in the usual way as a
velocity damping factor replacing zub-transient modelling of
the gen- erator.Negative damping arises when resist- ances,
either of generator armature or transm- ission line, become
sufficiently large when compared with reactances. Whilst
negative damping is not common, it is important for a study
such as this to consider what its effects will be.[8,9,10]
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So,the conditions for Hopf bifurcation to occur at a=0 are

fulfilled with (0)= + iVN , then
dx, (8 s 2 11
S a.l

The system coordinates must be changed to new coordinates
which are chosen so that dx_ {8 _,w_)
15 in the form : SRy
i 0 [Im X (0)] 0 Tﬁ]
dxao(do,wo)ﬁjllm 200} 0 = |-VN o |
It should be noted that 1f N=1 and of course a egual -to
zero, then

0 1
dxao(éo,wo) & I g

So, without changing the coordinates, the original coordi-
nates are appropriate to the calculation, To determine if
the produced closed orbits are stable or not, it is
necessary to calculate the sign of V*(0) by calculating the
partials of X Jd,, w,) up to order three (the negative sign
for stable state and the posit- ive sign for unstable
state}.

3™ for all n»l1 since x,(8,u)=w
s YAl .
a&Jam“*j o’
a“x2
aajaw“'J (60,0) = 0 for n=1,2,3 except
azxz ngz
5 (6 ,0) = ¢ and s 5 (60,0) =N=1
38 i as

thus, V' {0)=(3n/4)(c+1l) > 0, since ¢ 2 0O

Therefore, it is seen that the orbits in this case (N=l) are
unstable.

This proves that, if the operating point is very close
to the point at which the max-~imum power is delivered, the
power system is tending to the state of instability under
the effects of any small disturbance (steady state stability
limit), because at N=1,it means that

BP~ o* = 1, i.s. Bise '+l .
As the values of b&c are much greater than 1 as shown in the
numerical example in the next item, s0 b=c hence =
which means that the operating point is in a neighbourhood
which is very c¢lose to the limiting point of maximum power,

In case of N#£l1,it is necessary to express the damping
coefficient in terms of the rotor angle [11] to be able to,
apply Hopf bifurcation theorem, Otherwise, the value of
(0) is always egual to zero, l.e. it is not possible to
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decide the stability.

2.2 Regulated £ )
Qgﬁgrnor El{:u‘: _____
Considering the

machine shewn in £ig.(

he turbine and
equations arse:;

Wwhera &

g=={ i c=1/M P '.'=]./,,
k: sgfrarg= inltial
lnput power
The system has thg eguilibriom point (&4 ,wy Pig )
where, Gg= sin~*{( q/ﬁr) ) Wo=0 Pig=g/t ,thus
X (b 0, q/t) 0 for all wvalues of a, and a, ls the

hlturratlun parameter,

0 1 o |

dx fé b N Cag = a c |
- O o ]
= <l

z 1'—]

The characteristic pelynomial equation is

£3+(r_ﬂ)x21-yg+o/r—ra)x+c=0 (*) and

L2 2 3 F
b 'r -c'g
This eguation haz two purely imaginar g roots if and only if
the product of the coetficients of and X terms is egual
tc the constant term, 1l.e.
(r-aO)(ic¢ﬂ5r~raO)=

then
= s NN
. (0/r+r +ic )*VﬂOJS—r +Qc)2-4lcr6}

Assuming the characteristic polvnomial be written
cx~A)(x X)(x -a)=0 where A= A1+1A I
—(2)1+u)x +{lx1 +2A13)x—}A]2 (G50
Equatlng coefficients of 1like powers of x in (™) & {**), we
get

aRrra =00 +a, - lAlzu

&c+o/r*ra LA‘ +2)u

solving these three equatlons g
a=~(r-a+2),) and alle*ro/r-ra)=-o+2i,a
—(r—a+2A1)(Qc+o/r—ra)=—a+2kl(r—a+2A1)

Differentiating w.r,.t. a, setting a=a0,and subistituting

—l(ao)=0, and for Rc+0/r>2rao,



Mengoura Bulletin Vol, 8, No. 1, June 1583, E.,

4 +g/r-2ra
a T m——— — > 0
1( OJ 21 r-ra Jy¥ir-a )7}
o o]
Theraefore,the eligenvalues c¢ross the imaginary axis with
1zero speed, & hence a Hopf bifurcation coccurs at 3
At a ¢ [Ale=—gin a=-{r-a_)
Hus9 %) = seTrEEeT G
thus [ S T=as .
the basis for R®* muit be computed in which
lf‘ 0 1 0]
H_;‘(do, D e/ e 4 = i ay T
| (8] =\ ot Rl
cecomes E d s
| 0 YOI Tr=a. ) 0 |
R b T o 9 0 |
il : poj U ]
f 0 0 =R - =5y, |
ind obtaining e vagtor field of the system w.r.t. these
basas to defc*w'ne the sign of Vi(giwhich decides the
system stability. The published computer program BIFORZ [13)

can be used for rnis purpose.
NUMERICAL EXAMPLE [14]:Considering one machineg infinite bus
system with Lhe fo‘low1ng data:

LT .05 . H =3 MI/MVA P, ,=0.8
Xq=1.05 , .-:d—' . 20 , By=0.07 . Xy =X =0.69 ,
xt=0.36 r THe=Y 8Sec.

T B ol ol )
Q‘[é‘ | L WL UL L Pl ERETERY
| e e b .
K\\\_/// # E VtLP

The constants of the governor

response are taken as
=0,05, k =20 =005 ser,
then by calculation
Bl 428 [ /38 20 By =1.265 r M =0.02
¢ =50 , a =-50 D as a function of damping coefficient
b =63,25 ol =2 r 1 =40

q =1,6 , g9/ =1q =0.8
tall values are in per unit) 4
The system equilibrium peint is ( 39.2 , 0 , 0.8 )

=97.99 £
2 1 o]

dxs ( 3H. M, N, Dedn = ~48.,99 a 50|
0 -40 -2

a,=1.95, then D=-0.04,i.e. when the armature resistance is
no% negllgable

148p)=0.5 > 0 ,i.e. the eigenvalues cross the imaginarvy
ax1s at nonzero speed.
At a ,the two conjugate,; pure imaginary eigen-~ values have
the magnitude

'Y —/q/(r ao)— 45,2227

while the thirgd eigenvalue is o = ~-0.0479
Applying the program BIFQOR2, the sign of the parameter V(()
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has been found to be negative i.e. the periodic orbits
resulrting from the Hopf bifurcation are stable.

Of course, if the gain constant or time constant of the
governer response or any of the system operating point
conditions{e.g,mech input power,...,etc.,) has changed, then
the damping bifurcational parameter, i.e, the bifurcation
condition and the condition of stability will also change,

3. CATASTROPHE THEORY FOR DYNAMIC STABILITY OF
THE SYNCHRONOUS MACHINES.([15,16]
Representing the motion of the synchronous machine by
the followxng equatlon

M6+D6 P - -~{E R E Vv (R Cosd- qulnﬁ)}
z
P
+ Vt -2—5"—'——— S5in28 |
The equilibrium point of this eguation is at §= 0 and

when the right hand side vanishes.

A similar result is obtained when considering the
energy balance of a power trans- mission system [17,18]}
where the system is stable at minimum potential energy

function. Applying this principle, we get :
oy
t=l[p - 2, {E] °r, ~E,V, (R, Cosé=x Siné))
o 2 3 x "xd
+ vE 24 _C s5in26)dé=0
L 2. X
q-d
Assuming 2
9 X -X E R
§i= V gl B
t 2X _x i 7
g d z
R EV
E = t R h = ._.g._i__x
2 a 2 q
z g
Thus P . ] 1
= (Py ~h)3+E8inf+bCosd- A Cos28 + (54-p)
where,d is the max ang%f %g osc111at10n§, % e. ¢
= 8 3
f = (P, —h)a+.€(6-4-6» o) * bd-g v g -aps )
T Eiiacaate 85 280 Pt )
2 B==aa - 40 A
the 6~jet of the total energy f is:
1% = (p +E—h)+_(—-—-6f+——~35) b :2~-§~ )
J i L < 7 54
....4
5% B 25
Y =

So, this unfolding is transversal, and hence equivalent to
the standard butterfly, which can be written in the
standard form as follows:



Mansoura Bulletin Vol. 8, No. 1, June 1983, o1

Ehe STERE ST BTSSR DL Ry CL At o

Mgb; _-._é-ﬂ‘ + {%5& ~ ?g*a,‘rta
Thm!‘nra-. '
J l’iﬂsﬂ, *-;e:%#ual "o 43"’ (*w%)
ﬂﬁﬁi‘#: %

oy =/ (Pzﬂwh}fﬂﬂo "g g o g 1/3Q

oy /1205 - 28)), ¢, “SGg-px}
qQ = :%g-'ffﬁja

The eguation (***) is the standard form of the but;tuﬂ.y
nnttolﬁt E’ﬂ shown in £ig,(31 and more details are givm in
x
Lﬁplying the butterfly mnﬂﬁlﬂ to the pumerical
example given in section 2, we can locate the stable zones
for the machine working either as a generator or as a motor
{zones 1 & 1Y , respectively) b? using the energy balance
‘aquation to determine the stable mm:: nm:lu for the coeff-
icients of butterfly manifold equation, 3 ftxi.ng O 4
r:,; as shown in fig.(4}). 1t has been aca% af_
dnnd not appreciably change the valnu at =
" fore we can make the assumptign that the :unftue nntt
:gi #t:.. are approximately :_bnntmt.s. and consequently the
‘bifurcation section in the control space is fixed and there
is no swingling of the butterfly. On the other hand, if “the
transfer impedance is changed, it affects the values of all
ﬂcnffj.ciantu ;};ua €4Sy, hence the hﬁﬁterﬂg manifold is
swinging, It t“pe“refalenlated for its new coefficients,
‘because the bifurcation met in the control space will change
and take one of the forms which are illustrated in app-
index (1}, fig.(5). Also, it has been found that the input
mechanical pewer Py affects the value of the coefficient a
only. Then the effect of its change together with 'gk
¥l -8

confined in a fixad bifurcstion et in the control
with a fixed buttetﬂ; manifold .
0f course, if the change of Eq is too great, than it
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will considerably affect the values of ¢, ,c,,¢c.&C, both same
P == LIV B
effect as impedance changes.

4. CONCLUSIONS

It 1s seen that this paper has demcnstrated the appli-
cation of the Hopf bifurcation theorem to the study of the
stability of closed orbits of oscillatlon produced at the
equilibrium point of a synchronous gensrator, paralleled to
a synchronous power system, when subiscted to small distur-
bances.

This powerful mathematical method indicates the depen-
dency of the properties of these orbits upon the system
parameters, without resorting to the solution of swing equa-
tion by numerical integraticn. The important sgignificance
of the damping coefficient 1s also illustrated by the appli-
cation of the theorem. The present limitation of the appli-
cation to non-linear system is when not more than two
eigenvalues cross the imaginary axis at non-zero speed.

Catastrophe theory has been used teo vizualise the sta-~
bility problem and a “butterfly* manifold has been shown to
be appropriate when the effects of input, synchronousg asyn-
chronous powers and saliency effects are included. The
authors have previocusly demonstrated the applicability of a
"cusp® manifold [l1] when only the effect of saliency is
conaidered
"The increasing camglexity of the catastrophe manifold as
more parameters are included iz thus demonstrated.

When step~function changes of transfer impedance and E
ocecur, the butterfly manifold must be recalculated, as both
of thege cause it to swing and change.

APPENDIX (I),
THE BUTTERFLY CATASTROPHE MANIFOLD

The' standard function is

5 G N | A | k! .
Fcl,.g,cs,cé, = gX +Zt4“ +363h +2c2x +L;h

{x 'is defined in case of power system stability as )
The catastrophe manifold is defined by the first derivative
of P & is given by =

5 3 2 : e
X +c4x +g3x +c2x+c1 = 0

and denoted by M, . The following treatment must, in the

interests of economy of spa¢e, assume the basic framework

given in ref.{19}, chapter 9, page 172.

Using (x,c4,C3.C0n) as a chart, mapped to M, by
(x,cq,ca,cz) e {x,cq,ca,cz,cl)

we have:

BB
b A

2
ey = -CoX-Cgx'-C,

3 2 3
The Taylor expansion is

1 6 ey 3 1) U 4
CRLEEE 1Cgxty)= 5y~ + Xy *(zx +3c4)y
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» o 5 ;
+(%§x3+c4x +%c3)y3+ (%x44»%c4x“~+03x-+%c2)y2 + 0y
22 3 3 3 5 6
~{gPgR T t gl TR R )

By using the coefficients of Taylor series, and taking the
coordinates as follows:

; . e ) 2
guadratic @ plx,C,, C. ;0. 1% =x = FO,X+C,/
] 8] Si15a 2) GXHEC,XTHC X c2,2
. ; o L e
cubic 2 q(X;:q..l,cz)m 'fﬂ +c4x+c315
o i
quartic : th.cd,cs,cz = éx'rqu4
guintic 1L Xy e, B, it re ¥
( ] ',,.I 31 2 &
sextic = Bl s e .0 0% 177G
473" "2

Thus the hyperplane t=1/6 in (p,q.x,s,t)~8pace ,hence
(p,g.x;8)~apace can be used a5 a chart for M , and this
relates to the (x,0 ,c.,c.)~ chart as v

x (pyg.x.8}l= g LR S

¢ ip,g,r,s)= 4r-10s 2
d ,‘:n'ﬁl)

ey

¢ Upig,r,s)= g-12rs+208°
o

c ipyq,r,s5)= 2;—6qs+12x52~1534

I
The guadratic term is degenerate iff p=0, which dafines the
(g,r,;s) space., On this space the 3~jet is of type y¢ unless
g=0 also. This defines the (r,s) plane; on this we have a 4-
jet of type y4 or -y4 ,unless r=0, This defines the s-
axis: on this we have a 5~jet of type y® ,unless s=0.
Finally, at the origin we have the original unfolded 6-jet y®
type of function, We then have a flag of subspaces
gt —DRrRY =r? —Rr! —mr°

i.e, the butterfly point at the origin of type ys , On a
line of swallowtalls y® , This lies in a plane of cusps,
with standard cusps ¥~ on one side and dual cusps ~y- on the
other side. This plane lives in an R® of folds y° ; on one
side of this we get Morse maxima and on the other side Morse
minima.

Using equations (***#*) we obtain the same structure on
the (x,ca,09t9)-space, and this transfers to M ., In fact M
is given parametri~ cally in terms of p,q,r,s as the set of
points

3g-12rs+20s3, 2p-6gs+l2rs?~15s*

:2ps+3qsz-4r53—4s5)
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Sa, the uuqnuﬂty set is given by untiuq p=0, whiah gives
{s uumﬂ 3g-12rs+20s°, ,—sgnn:uﬂ-mu*
f -3qa§-.¢_£?s3-ﬁ5 )

and the higher degeneracy g=0 oceurs on

s, 4x-108% , -12rse20s? , 12rs2-188% arsd-as®)  (4m

:u.h.iia the nhallautnlx line degmarm r=0
ooouUrs m-:

and the bﬁut pnf?\ qaus uha crlgin. Hence the
_hifu{?tmn set h—. pumumim by q,r,8 as the set of
poin

‘ﬂ 'ﬂ -8 1\':‘1 j-'{s 3’2 2 3:!:1!:&2‘2553*
_‘M }zxit_mﬂ ;3135-:":35-{&5

We expect to find a plane of cnqegr h;; ﬂ'n:t:*:ting (*x%) into
ﬂ' itﬁr tha m ﬂE Pﬂintl _. l' ‘“

2, -%2:5-\-2&13 :
s drawn as a two dimensl

“wo aimgnuinml cross-sections as #hnhn 1& thl iigﬂ.ﬂ.
where illustrates how :mﬁcni correspondi 430:.:
values of c,,0q are viewed in t:lu il-phng. ,-,H‘-. l!?f-ﬂ

0, then the usctian looks uku a

tion set with controls o . gm u effect M
‘swinging the whole i.nt,m:e .E the ﬁtmtian
depending on the sign of vmiw :& hu the region o
negative introduces a m:a compli structure, with
a new pocket. ag w mtnﬂq‘xﬂm side to side,
vgﬂing C, causes one !.i.\it ar other of the pocket to
ggs 1lapse i,.ﬁu; a swallowtail and disappear, luving a ﬁﬁq’u-
; p curv - | 5

1 ;'g mas unm ngr.t:‘a ' ﬂns the effacts

!iqn;a'-:- 6) LB e
upo _proje “th ,_ _space.
maﬁm for &h‘wx wﬁu‘ mim ~agb, The
differences between ﬁhen ;ﬁu from the swinging of the
manifolds, and lead to the changes in the hifnrution'
sections M!kﬂ

‘i

BHM
;-n.n.saum J.L.Dineley W Theory as a
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LIST OF SYMBOLS USED

NOETE o

=rotor angle

=rotor angular velocity

=inertia constant

=velocity damping constant
i =input mechanical power

Pm =maximum power limit
g =rotor angle at eguilibrium point
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w_=change of. rotor angular velocity, at the

eguilibrium point=p w_ =0, where p=u
{synchronous speed)

Re =real part of ...

Im =imaginary part of ...

T =time constant

k =gain constant

E =internal machine voltage behind guad.
9 axis .reactance

Vi =terminal voltage , R, =armature resis,

=

X4 =synchronous m/c react. in the direct
axis

% =synchronous m/¢ react. in the guadrature

axis

2 =the transfer impedance (internal imped.
+gvetem imped.)

x, =system reactance (exteinal reactance)
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Fig. (1): . The Hopf bifurcation,
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Fig, (2): Block diagram of the system including speed
governor regulation effects.
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Proposed Future Work

This is the theoritical basis of a more comprehensive
power systems laboratory study. The next step will be
presentation, a dynamic form, of the catastrophe manifeold cn
a high-resolution graphic monitor.

The position on that manifold corresponding to the
actual rotor angle will demonstrate visually the position
relative to the stability boundary.

Finally, it is hoped to monitor a synchronous generator
and identify the manifold under on-line conditions.




