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DESIGN OF STABLE CONTROLLERS FOR MODEL FOLLOWING
DISCRETE TIME SYSTEWMS USING APPROXIMATE INVERSE SYSTEM
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ABSTRACT

A formulation of stable dynamical controllers is proposed for discrete time
systems. Based on polynomial pole placement. the resulting controlier may be
unstable. Despite the fact that controller stability is often overlooked in the design
strategy, il is of fundamental importance since the practical implementation of an
unstable controller is extremely difficult. Using approximate inverse systems obtained
from leasl square approximalion, we show that unstable controllers can be avoided.
One of the major points in this methed is the use of least square approximation t
determine an approximate inverse system easily, which is suitable for practical
applications in control systems. The results of computer simulations are presented to
illustrate the effectiveness of the proposed method. '
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1. INTRODUCTION

During the past couple of decades. a lot of attention has been given to the problem
of designing pole placement controliers. The fundamental result on pole placement in
finear time invariant controllable systems states that the closed loop eigen values of
any controllable system may be arbitrarily assigned by state feedback control [1-4].
Most of the early work on pole placement utilizes state feedback methods. For some
systems in which the states are not measurable, full state feedback is not practicable.
Thus. 2 number of methods for pure gain pole placement by output feedback have
been developed [5]. If the number of inputs and outputs are less than the order of the
plant, the pure gain output feedback controller can not arbitrarily assign the closed
loop poles. For this case, the dynamical controller is very helpful for pole placement
via output feedback because it not only enables arbitrary assignment of poles but also
provides additional design freedom [6]. A number of techniques for dynamical
controlier design using pole placement have been developed in recent years. However,
the resulting controllers, although internally stabilizing the system, may themselves
not be stable. This preblem is not unique to the pole assignment approach and can also
occur in other major controller design strategies. Despite the fact that controller
stability is often overlooked in the design sirategy. it js of fundamental importance
since the practical implementation of an unstable controller is extremely difficult. As a
result a2 method which exploits design freedom to guarantee both closed loop stability
and controller stability is sought. Based on a generic controller forin for polynomial
pole placement, a formulation of stable dynamical controllers was introduced in [7]. In
this paper, another method for stable dynamical controllers is presented. The proposed
method is based on approximate inverse systems obtained from least square
approximation LSI. The least square approximation is used to find the approximate

inverse sysiem. One of the major points in this method is the use of least square
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approximation 10 determing an approximale inverse system easily, which is suitable
‘ for practical applications in control systems.

The paper is organized as follows. In section 2, classical polynomial pole
placement is summarized. Section 3, introduces the concept and analysis of stable pole
placement. The algorithm of approximate inverse system using least square
approximation is found in section 4. The results of computer simulations for some
examples are presented in section 3, 10 illustraie the effectiveness of the proposed

method. Finally, the main conclusions are formulated in section 6.
2. POLYNOMIAL POLE PLACEMENT

Survey of polynomial pole placement for linear time invariant systems is

considered. The input output characteristics of a general plant P(z_l) are described
by
—dn, -1
- z "B(z

Pl 222 ) m

: Alz )
d is the time delay, A(z_l), and B(z_l) are polynomials of order na, and nb
respectively, and has ihe form

!

A(z_l)=l+aiz_ -1-:12:';_2+.........+anaz'nzl {2)

Bz" ) =bg +bjz7  #byz ™% # +bppz” (3)

1t is assumed that the {nt) fixed desired poles of the closed loop system are given by

the roots of the polynomial T(z™ '} which has the form

l 1

T{z " )=1+tyz" +t2"_2+ ......... +ty 2 4)

As aresult there exists the following Diophantine polynoimial identity for polynomials
Az"Y, B and Tz

/-\(z"l )Go{'z:"lj—: z }.-..s.- 5~ ;r:”-,-‘{z_]

y=T(z™) (5)
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l’otz'lj and Gg (z"l } detines the minimuim order controller C(z _l)which assigns

the nt lixed desired poles determined by the polynomial T(:fl ).

-1
- Galz™h)
Clz l)=_o_____1_ (6)
Fo(z )
Both F, (z_t) and Go(z*[) have the form
Fo(z_l)=l+flz-] -t—fzz"2 F e +t‘nfz'“f @]
Go(z“|)=g0+glz"]+ggz—2+ ......... +gngz"n'g ®)
where
af=nb+d-1 )]
ng = na -l (10}
The closed loop transfer function of the system will be given by
PR FOBETN0ETH 298G ),
Az Yoz ez 9Bz G 7Y T

The roots of the polynomial F, {z'l fmay lie outside the unit ¢ircle, and the controller

is not stable. in the next section, the stable pole placement is introduced.

3. STABLE POLE PLACEMENT

It can be shown thatif Fy (z_l) and Go(z‘]} satisfy the Diophantine equation
given by Eq.(5), then ail F(z"l) and G(z']) are given by
Fe 'y =Foz )+ 2798 "haE™) (12)

6z =6, h-aeThae™h (13)
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musl satisfy Eq.5). If Fo(z~!) was unstable, E(z™!) is chosen to be stable and
Eq.{12) is solved for Q(z“l) using least square estimation. Eq.(12) is rewritten as

Fz™)-Foz Y =2"98"hae™) (14)
Q=™ l) is a polynomial’of order p. of the form

Q(z_l)=q0+c“z_l+qu"2+.........+t:;pz"p {15)
Eq.(14) has a solution iff the first d coefficients of both F(z 1) and Fo(z™!) are the

same. This condition can be satisfied by proper choice of the roots of F(z™). The

closed loop transfer {unction in this case will be

_z798ehiG,eTh - A e

TF | (16)
Tz ")
4. ALGORITH FOR APPROXIMATE INVERSE SYSTEM
The problem is reduced to finding Q(z~ ]) which satisfies the relation
27980 Y =Fe ) - Fo ey = 2 Y (17)
Eq.(17), can be rewritien as
[B] lq] = [h] (18)
-bo 0 ) i ‘-’Io i [ h0 ]
by by 0 a9, hy
by b a4 h 9
b
where B = 2 bo . h= (19)
by by
bm b
b : Ip-I hllb-i-p—'l
L by | L dp | L Mnb+p
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B is the (nb+p+1)x{p+1) matrix. q is the (p+1)x] vector. and h is the (nb+p+1) vector.
Consider the following cost function :
J=(Bg~h) T (Bq-h) (20)

Minimizing the cost tunction J with respect 10 q leads to
q=@T8)"1Th )

5. SIMULATION
In this section. the results of simulation studies are presented to give an indication

ot'the adaptive scheme,
Example 1 : Consider the design for a rotary hydraulic test rig [7] with d=3. The

polynontials A[z_l ). and B{z} have been identified as

£

Az~ =1-2.8805771 +3.782727 2 —2.826927° +1.17852~ % ~0.211627°

=1y 2 0036+0.17182 0302922 —0.04382~> -0.077522

B(z
The desired closed characteristic polynomial is assumed 10 be :

Tz = 0-032"0-04z"H 2120727 4012272

Solving the Diophantine identity Eq.(3). vields :
- —_ T =7 -
Folz ™ y=1+2.180527 + 26182272 + 2131273

069697~ % —0.6995275 —0.37257~°
4

Golz ™1y =2.9023-6.76827) + 7467272 = 43287273 +1.01692~

The roots ol the polynomial F(,(Z”I} are -0.1225% 1.109%, -0.9691 £ 0.4698i, -

(.5061, and 0.5088. Since four roots of the polynomial Fy{z "} are outside the unit

l}as

circle. the controller is not stable. But, if we choose F(z™

.



Mansoura Engineering Journal, (MEJ}, Yol. 26, No. 4. December 2001. ., 7
F ) =1+2.180527" +2.61822 72 421266273 +0.90762 7% —0.362452 73
—0.509727% ~0.0317277 +0.341627% +0.349622 +0.08952 1% —0,09312!!

-0.0442 "2
The solution of Eq.(21) for p=3, gives Q(z~ [) as

Qz1y=1.2222-0.195227 = 0131272 +0.66327 2 +0.830527 % +0.56772
The corrosponding G(z™*) for this Q(z™}) will be

G(z')=1.68-3.0524z" +2.412322 -1.078727 +0.271z~ - 0.0553z "

+0.018727° ~0.3536z7 +0.6871z" -0.482727 +0 1201z~
The conlroller poles are all stable with their magnitude less than 0.9798. Comparison
of both controllers is found in Tabie 1. The combavison includes maximum vatue of
the outpwt (v}, maximum value of the conlrol action (u), maximum value of the error
{e), average of smmmation of the square of the error (se2), and the average of
summation of the square of the control action (su2). It is clear that the suggested
controiler is advantageous than the ordinary pole placement controller. The only
disadvantage of the proposed controller is its higher order, since the pole placement
controller is of order six, while the proposed controller is of order twelve. Simulation

results for the system using both  controllers are shown in Fig. 1 and Fig, 2

respectively.
Table 1 Summary of results of example 1.
y U € I Se2 Su2 j
Pole

placement 0.957 39.92 1.936 100.1603 22852.73
controller '
Proposed
controller 0.8065 15.226 1.1674 98.42 3454.479

|

|
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Fiz=ly=1+2.180527 ! +2.6182272 +2.1266272 + 090762~ - 036243273
-0.50972"6 <0.0317277 +0.34162~8 +0.34962=° +0.08952=10 —0.09312~ !

~0.0442712
The solution of Eq.(21) for p=5, gives Q(z_l) as

Q"1 =1.2222-0.19522 71 —0.15127 % +0.6632 % +6.88052~% +0.56772 >
The corrosponding G(z™") for this Q(z_l) will be

G(z7')=1.68-3.05242" +2.412327 ~1.078727 +0.27127' -0.0553z"

+0.01872 -0.353627" +0.6871z™ - 0.4827z~ +0.1201z7"°
The controller poles are all stable with their magnitude less than 0.9798. Comparison
of both controllers is found in Table 1. The combarison includes maximum value of
the output (y). maximum value of the control action (u}, maximum value of the error
(e), average of summation of the square of the error (se2), and the average of
summation of the square of the control action (su2). It is clear that the suggested
contreller is advantageous than the ordinary pele placement controller. The only
disadvantage of the proposed controller is its higher order, since the pole placement
controller is of order six, while the proposed controller is of order (welve. Simulation
results for the system using both controllers are shown in Fig. | and Fig. 2

respectively.

Table 1 Summary of results of example 1.

y U | € Se2 | Su
Pole B
placement 0.957 39.92 1.936 100.1603 22852.73
controfler -
Proposed
controlter 0.8065 15.226 1.1674 98.42 3454.479
|
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Fig. 1 Simulation Results of Example 1 using pole placement controller.
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Example 2 : Consider a system with d=2. The polynomials A(z_l ), and B(z“l) are
given by

Az™)=1-0.0431z" +0.78522¢™
B(z™')=-7.383+5.4949z2""
The desired closed characteristic polynomial is assumed to be :
T(z'y=1-0.8891z"" +1.1844z% = 0.2791z7 - 0,022z~
Solving the Diophantine identity Eq.(3), yields :
F(z")=1-1.846z" +0.81872"

G, (z7)=0.0676-0.113z""
The roots of the polvnomial Fy (z_!) are 1.1053, -0.7407. Since one root of the
polynowmial Fo(z_i) is outside the unit ¢ircle, the controller 15 not stable, By, if we

choose F(z"l) as

F(z"')=1-1.846z"" +1.2779z27 -0.393227 + 0.0454
This choice ensures that the controller poles are at 0.4615. The solution of Eq.(21) for
p=3, gives Q(z_l) as

Q(z”') = -0.06217 + 0.007013z™" ~0.0008628%* ~0.00058842"
~0.0003657z™* ~0.0001752z""°

The

corrosponding G(z™') for this Q(z 1) will be
G(z7)=0.1298-0.12272" +0.0527 ~0.0052~ +0.001z™ +0.0006z
+0.00028z™ +0.00013z~"
Summary of the simulation resulis for the system using both comtrollers is found in
Table 2. Itis also clear that the suggested controller is advantageous than the ordinary

pole placement controller.

11
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Table 2 Summary of results of example 2.

\ Y ) u e { Se2 ‘ Su2
i_k_ Pole }‘ :i T ‘{ j—l
placement 3.2053 l 2.1514 4.2053 3.1616 ' 1.9385
Lcontrol!er }. ! !
| Proposed | 7\ !
Cconvoller | 2535 | 2237 | 3:5 | 8239 27684 ¥
| A P I

6. CONCLUSIONS

A new design strategy for stable dynamical controllers via polynomial pole
placemnent has been presented. Based on approximate inverse systems obtained from
least square approximation, a formulation of stable dynamical controllers was detailed.
One of the major points in this method is the use of least square approximation to
determine easily an approximate inverse system. This is suitable for practical
applications in control systems. Two examples demonstrate the significance of the
controller design strategy presented in this paper. Though a new stable controller
design bv polynomial pole placement was discussed, the design strategy can also be

applied to other control design approaches which result in unstable controilers.
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