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ABSTRACT:

This paper presents the dynamic respense of simply supported steel railway bridges due toa
train moving across tbe bridge. The finite element technique 15 used in the analysis. The train
is modeled as a series of concentrated moving loads, and a bridge wilb a beam element. A
train type “D” given in the Egyptian code of practice is used in this study. A computcr
program is developed to achieve the desired analysis. Actual cases of simple span, single-
track steel girder bridges are analyzed. Natural frequencies and mode shapes of the
investigated bridges are computed. The dynamic factor based on the deflection and the
bending moment of these bridges, is also determined and plotted against the impact factor
calculated from the empirical formula given in the Egyptian specifications of railway bridues.
Dillerent factors atfecting the dynamic response of steel railway bridges. such as train speed.
its acceleralion. bridge span and damping coefficient of the bridge are studied.
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1. INTRODUCTION

The determination of the dynamic response of ratlway bridges resulting from the passage ot a
moving train across the bridge span is a problem of great interest for bridue engineers. This is
for two main reasons: (1) the resulting peak dynanuc stresses are greater than those due to
static-load  application; and (2) the vibration of the bridge should not be excessive, 1o
minimize fatigue eftects and avoid impairing public confidence in the structure. Many factors
influence the dynamic behaviour of steel railway bridges when traveled by moving trains.
These tactors include (1) material propertizs. dunensions and section properties of the bridge:
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(2) the damping characteristics; (3) the train factors which are the axle toads, speed, ... etc.
Since railway bridges are dynamically loaded by moving trains, increase indeflections,
normal stresses and shear stresses usually happen. The increase due to the dynamic
component is normally treated in design through the use of impact factors, defined as the
ditfurence between the dynamic and static values divided by the static value. Bridge designer
engincers are usually interested with the increase in stresses and displacements due to
dynamic effect. The objective of this paper is to develop an analytical approach based on the
finite element method, to study the influence of the different variables on the dynamic
behaviour of bridges, according to the Egyplian code for loads on railway bridges.

2. DYNAMIC ANALYSIS OF RAILWAY BRIDGES

The equation of motion of vibratory systems takes the form:

{7} + ()Y} + (k1Y) = {F} (i)

Where:

(M], {C], [K] are the mass, damping and stiffness matrices respectively.

(Y}, {Y}, {Y} are the acceleration, velocity and displacement vectors respectively.

{F} 15 the external load vector.
Free vibration analysis of a railway bridge must be achieved first to provide the most
important dynamic characteristics of the bridge, which are the natural frequencies and the
corresponding modal shapes. The finite element approach is used for this analysis. Once
these characteristics are determined the mode superposition method is used to determine the
dynamic response of arailway bridge under the effect of moving trains. The internal actions
occurred during vibrations at any station can be calculated from the equation:

{P}E = [K]E {‘5}5 + [*M]E {5}5 (2)

Where:
{P}g 1isthe element end forces.
[K]e s the element stiffness matrix.
[MJg is the element mass mairix.
{0}e 1sthe element end displacements.
(81¢ is the element end accelerations.

2.1 Numerical Example:

To verily the reliability of the method ol analysis and the developed computer program, a
simply supporied beam of uniform cross-section shown in Fig. I is subjected to a load of
magnitude £ =20,000 Ibf moving at a velocity of v = 748,14 in/sec. The following data are
obtained from Wu and Dai (1987): length of beam L= 460 in., flexural rigidity £/= 6.0 x 10"
'bf.sq. in..and mass per unit length m = 0.45 lbm/in. The first towest five natural frequencies
obtained by the present approach have been compared with the previous results in Table 1. It
can be seen that a very good agreement is achieved. The dvnamic response calculated for the
midpoint of the beam has been plotied in Fig. 2. Also shown in Fig. 2, are the results by Wu
and Dai (1987) using the transfer matrix method. [t is confirmed that the present solution
agrees quite well with the previous one.
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Table 1. First five natural frequeneies for the simply supported beam:

B Stud Natural Frequencies (rad/s)

= Y ] O] 1 w32 w3 _L Wy ] w3
Wuand Dai  (1987) | 17.030 | 68.099 | 153.146 | 272.072 J 424.744
Warburlon ~ (1976) | 17.031 | 68.126 | 153.286 | 272.504 | 425.788
Yangand Lin (1995) | 17.032 | 68.133 | 153365 | 272.956 | 427.469
Present study 17.031 | 68.126 | 153.283 | 272.504 | 425.787

1)

l V—>

L =460 in. //_j

Fig. I Simply Supported Beam Subjected to Moving Load

3. EGYPTIAN CODE OF PRACTICE

3.1 Live Loads for Railway Bridges:

The Egyptian code of practice (1993) states that for the calculation of railway bridges and
their substructures, the rolling live load, not including impact, shall be taken as one of the
three Train-types “D”, “H”, or “L”. The Train-type “D” shown in Fig. 3 is considered in the
analysis for the present study.

3.2 Dynamic Effect on Railway Bridges:

The Egyptian code of practice {1993) considers the following empirical formula o determine
the factor [ by which the live Joad isto be mulliplied to give the addition for the dynamic
effects on raillway bridges: [ = 24/(24+L), with @ maximum of 75% and an absolute
minimum of 25%, where L in meters, represents the loaded length of one track, or the sum of .
loaded lengibs of double tracks in direction of motion producing worst stresses in member
under consideration. For ballasted floor bridges with thickness of ballast 20 to 30 cms., [ to
be reduced by 20 %.

4. STUDY CASES

To study the dynamic behaviour of steel. simple span, railway bridges when traveled by
trains. tour practical and important cases of ballasted floor single-track deck bridges are
examined. These bridges are bolted and welded plate girder bridges. Fig. 4 shows the cross-
sections of the main girders of these bridges. while Fig. 5 shows the whole cross-section of



Fig. (3) Train Type “D” According to Egyptian Code

C 17 1. I Ishac & M. K. Swailem
1.000 —
= 0.800 —
= | Present work and
E Wu and Dai (1987)
£ 0600 — (complete adaptation)
b .
=
% 0.400——|
= .
[3~1
S 0.200 —
)
& |
0.000 —
L LN I L L L LA L DL L
0.00 92.00 184.00 276.00 368.00 460.00
Location of moving load (in)
Fig. (2) Midpoint response of the simply supported beam
(shown in Fig. 1)
Wagon 80t Tender B0t Locomotive 100t Tender 80t Locomotive 100 ¢
i_ 352%kg/m 3523k /m
l 65584 /m | §523g/m | 9523/ m 9523kg /m ! §523kg/m
Fa@ 4+ a7 s gk - s &l
_ hispmsy s [1.75] 3.60 1 1.601 1Bt B0) 5.00 120012.00 1 1.75(1.75] 5.00 | 1801180 |1.80 | 300 ! 200] 200]1.35 175115
[ [ T T T T e e R O T R I
+2.60m 3.40m | 10.50m | 4.40m | 10.50m
I [
12.00m 18.90m 13.90m
i
\ S
vy
180




Mansoura Engineering Journal, (MEJ), Vol. 25, No. 1, March 2000. C.18

the bridge. The material of canstruction is steel 32 1t is to be noted thal the flange plales of
the welded main girders are slot welded. The data of the considered cases are as (ollows:

Casc 1 A simple span bolted plate girder bridge is shown in Fig. 4. The span = 15.00 m. is
divided into 20 elements 0.75 m each. EI = 250425 t.m® . Mass M = 4.065 /m.

Cusc 2: A siuple span bolted plate girder bridge is shown i Fig. 4. The span =21.00 m, is
divided into 28 etements 0.75 m each. EI = 516040 t.m? , Mass M =4.24 (/1.

Case 3: A simple span bolted plate girder bridge is shown in Fig. 4. The span = 2530 m, is
divided into 34 elements 0.75 m each. Ef = 1120330 tm®, Mass M = 4 .43 t/m.

Casc_4: A simple span welded plate girder bridge is shown in Fig. 5. The span = 30.00 m_ is
divided into 49 elements 0.75 m each. Bl = 1457190 t.m? , Mass M = 4.59 t/m.

Where £21is for one main girder only.

:':Iul

D lillet welding
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of the bridge

5. RESULTS AND DISCUSSIONS

The dynamic response ol steel railway bridges traversed by trains is allected by several
parameters concerning the bridge and the moving train. Among these parameters are (1) Lhe
train speed; (2) the span of the bridge: (3) the train acceleration: (4) the damping ol the
bridge. All cases of the investigated bridges are studied for these dillerent parameters. The
undamped case is considered for the analysis of the [irst threc items. The results of this
sludv are presented in this section. The dynamic eflect Tactor (I} is caiculated lrom the

[ellowing formula:
Maxinwandynamic respone
/] s|——————— — 1| x 100 {3)

Muavmumn static response

The natural [requencies for the unalyzed cases are given in the lollowing table (Table 2). It is
(o be noted that the caleulated moments and displacements are due to the irain loads only.
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Table 2. First five natural requencies for the investigated bridges:

e —— e ————

Naturat Frequencies (rad/s)

Study Case T T
_— o ] e | o By |
Case | 10887 | 43549 | 97.983 | 174.178 | 272.103
Case 2 07.807 | 31.231 | 70268 | 124.919 | 195.177
Case 3 07.633 | 30.532 | 68.697 | 122126 | 190.818
Cased 06.179 | 24716 | 55610 | 98.816 | 154.469

5.1 Speed Effect

The effect of train speed on the dynamic behaviour of the bridge is studied forall the
investigaled cases. The speeds censidered in the analysis are 40 kimv/hr, 80 kmvhr and 120
knvhr. Figs. 6 through 13 show the effect of tram speed on the displacements and moments at
mid-span points for the different study cases. Figs. 14 to 17 show the speed — dynamic factor
diagrams for these cases. The impact factor calculated from the empirical formula given in
the Eayptian code of practice is plotted also in these diagrams.

3.2 Span Effect

The effect of the span on the dynamic response of the bridge is illustrated in Figs. 18, 19, and
20. The spans considered herein, are 15.00, 21.00, 25.50, and 30.00 meters respectively.

5.3 Acceleration Effect

The acceleration of the moving train is considered in this study to be 2, 5 and 8§ m/sec’
respectively. The initial velocily of the moving train is taken as 80 km/hr. Figs. 21 and 22
indicate the effect of train acceleration on displacements and moments at mid-span peoint for
study case 1, while Fig. 23 shows the acceleration — dynamic factor diagram for this case.
The impact factor calculated from the empirical formula given in the Egyptian code of
practice is plotted also in this diagram.

5.4 Damping Effect

The study case 2 is investigated for different damping ratios to illustrate the effect of
damping on the dynamic response. Damping ratios considered in the analysis are 0.0, 0.03
and 0.10 while the train speed is considered to be 80 knvhr. Figs. 24 and 25 illustrate the
cffect of damping on displacements and moments of mid-span point of the investigated
bridge. The damping ratio — dynamic factor diagram is shown in Fig. 26.

6. CONCLUSIONS

1- The actual dynamic effect on railway bridges is approximaiely equal (o the impact factor
given by the Egyptian code for a speed of 110 kin/hr, while it can be neglected for speeds
fess than or equal to 40 ki/hr. For intermediate speeds a linear relation can be adopted.
Speeds more than 110 km/hr give a bigger dynamic effect than that given by the code.

2- The maximum dyvhamic responses are increased with the increase ofihe train acceleration.
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3- The dynamic effect decreases with the increase of the span length and has
approximately the same values given in the code for speed of 120 ki/hr. For lower
speeds, the dynamic factor takes smaller values compared with that given in the code.

4- The dynamic effect factors calculated for moments are slightly larger than those for
deflections for atl the studied cases.

5- The effect of damping on the dynamic response of railway bridges is small and can be
neglected.
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