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Abstract

This paper introduces a new structure of adaptive filter called Rcos filter. Analysis of
the filter is considered in details. A comparative study of performance of the filter with
different structures is also considered. It is found that the adaptive Rcos cascaded second order
structure outperforms the ladder, lattice, and cascaded second order structures, The new
structure find its applications in linear prediction of speech signals.

1. Introduction

In the field of signal processing, it is sometimes desirable to make use of a filter which
adapts itself to the input signal in such a way that the error output of the filter is minimised
(e.g. to eliminate noise, interference, echos, or other unwanted signals). Such an adaptive filter
is one aspect of linear prediction [1,2], in which the signal under consideration can be modeled
as a linear combination of previous input and/or outputs of the filter, The traditional form is a
tapped-delay-line or ladder structure digital filter[3,4, 5, 6], as shown in Fig. /. However, this
filter suffers from both poor convergence and sensitivity to round-off noise in practical finite
word length applications. To overcome these problems a modified structure developed by
cascading second order ladder sections in series was introduced [7,8], This structure is shown
in Fig. 3. Moreover, a lattice structure was also introduced to overcome the above mentioned
problems [9,10,11]. The lattice filter structure is shown in Fig.2. ’

The Rcos cascaded second order filter coefficients are preferred in linear prediction of
speech than the ladder coefficients. This is because of their closec relationship to the spectrum
of the speech being coded and their uniformly distrbuted sensitivity to quantisation noise
effects across the frequency spectrum.

2. Adaptive Ladder Filter Analysis

The basic form of adaptive linear prediction filter implemented as ladder structure {3, 4,
5, 6], is shown in Fig /. It consists of a finite impulse response digital filter with variable
cofficients (W, , / <i< M} Asignal vector X consisting of the output signals from the delay

line elements can be defined as :
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KT = [x(n) x(tn=1) x(n—M)] ¥7;
A prediction signal £(n) of the input signal x(7) at time n based on the M previous samples
x(n-1), X(1=-2),.ccciiiiiiiinne x(n-M) can be given as:
M
X(n) =3 wiln) x(n—i) (2)

i=1
where {w, (1)} are the prediction coefficients at time », in matrix notation form, equation (2}

can be written as.

itm) = WX (3)
Where

_H_WT = [w,(n) Wolh) wM(n)]
The prediction error signal efn) at time 77 is defined as:

efn) = x(n) — ¥(n)
= x(n) - W' X )

Minimisation of the mean square error may be carried out by the “Least-mean-square”
algorithm (LMS)[12], which requires that the coefficients {w;, /< i<M } to be updated at

each sampling instant n, as,
W (n+tl) = Win) + 2uefn) X (5)

The constant 4 is a step -size controls the stability and the rate of convergence.

3. Adaptive Lattice Filter Analysis

Lattice filters [10,11,12] of the type, shown in Fig.2 have coefficients Ks less than 1
in modules, and the forward and backward errors are all minimized in mean square value when
the output is similarly minimised (orthogonality property) .

The forward and backward errors at_each stage of the lattice filter are given by :

filn) = fii(n) + Kk b_j(n—1) (6)
btn) = b_y(n) + & fi_y(n) {(7)
with initial values given by :
Jo(n) = by(n) = x(n) (5)
The forward error generated by the final stage of the lattice, can be expressed in the form :
e(n) = fuln) '
M
= fo(n) + Zi‘kf b_y(n—1) )
i=

Equation (%) can be expressed in terms of the forward and backward errors at any
i of the lattice filter as follows
M
e(n)=fij(n)+k bn-1)+ kb, (n-1) I<isM (10)
J=i+l

Minimisation on the mean square error may be carried out by the “Least-mean-square” (LMS)
algorithm, which requires that the coefficients { &;, /< i<'M } be updated at each sampling
instant », as,
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8e’in)
3 ki(n)
&efn)
& ki(n)
The constant y is a step -size controls the stability and the rate of convergence as before.

Differentiating equation (10) gives
éefn) M ab_yn-1)

ki(n+1)=ki(n)-p

(11)

kin+1) = k(n)= 24 e(n)

————=b,_(n-1)+ Yk(n)= (12)
Fhym T O )
The change of &; should in theory have immediate effect, not only on the output error efn), but
also on the stored backward errors { 6;,_,(n—1{), I <i< M} hence the _o"IT
An
g

terms should, in theory, be non-zero. Since it is impractical to recalculate the backward errors
as adaptation proceeds, they in fact remain, in short terms, independent of changes in the filter
coefficients, therefore we can use the approximation.

Te) oy me i) =12 M (13)
=b._,(n- s =02,
& kyn) a »J
therefore
2
M;Ze(n) b(n)
J kifn)
where Q(n):[bg(n-l) byfn~1) ol bM_;(n—!)]T
the simplified  end-point” updating algorithm becomes
kin+l) = k(n) — 2uefn) b_n-1) i=12. "M (14)

4. Adaptive Cascaded Second Order Filter Analysis

The adaptive fiiter may also be constructed by cascading second order ladder sections
in series [8,9], as shown in Fig. 3

. : M g
The filter is M2 order with L = 7sectlons, if M is even. An odd order filter (i.e M s
M+1

odd) can also be obtained by cascading 1 = 5 sections in cascade. The output e;
() of an intermediate section of the filter is given by :
efn) = e_1(n) + aye_(n-1) + a,e_yn-2), 1< isM (15)
with
epfn) = x(n)
and (16)
efn) = e, fn)
The filter parametersa;; - j= ;5 L and j=1.2;
are updated sequentially by the LMS algorithm as follows
ag(n+1) = ay(n) - 2ue(n) g;(n) (17)

where &ij (n) are the gradient components calculated as
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g efn)

(n)
& d ay

efn-j) — ay g;(n-1) — a; g;(n-2) (18)

5. Adaptive Reos Cascaded Second Order Filter Analysis

In this section, a new cascaded second order structure is introduced. This structure is
called Rcos adaptive filter, and is composed of cascaded second order filter structure as shown
in Fig. 4. To understand the idea of the new structure let us perform the following analysis.

The transfer function of the cascaded second order filter can be obtained by taking the
2 transform of the error equations of the cascaded second order filter in equation (75) and {16)
as follows

Efz) = (1 + a; 270 +a, 272 ) E_)(z) (19)
with
Eog(z) = X(z)
and (20;
E(z) = Eifz)
v E(z) = l_L[(f +oay 27+ a; 277) X(z) (24)
i=1
E(z)

and the transfer function 4(z) = }FZ_) is given by

L L . >
Afz) = .1_{’,4,(:) = _1_{'(1 +apZ 4+ ayZ7%) (22)

where 4; (z) is the transfer function of the /A section.

In order to update the filter parameters using the LMS algorithm, the gradient of the
error g;j (1) is given as :

(n) defn)
Sfn) =
&ir 2 a, (23)
using Z- transform, equation (23) is expressed as :
L
Gu(z) = Z' TI(1+ ay 27" + a 27) X(z) (24)
=
where
i=42 i, L &j=12
Comparing (19) and (24), then
Z E(z o
GH(Z) = ) - Z !A'_ .f(z) E(Z) (25)

I+ a; 7+ a;; z

-1 . . .
and 4 (Z) corresponds to the inverse transfer function. The filter coefficients are updated as

an+i) = ayfn) ~ 2pueln) gyfn) 0 < p< (26)

max
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If the roots of each section of cascaded se ctions occur in a complex conjugate pairs

with magnitude #; and phase &; where: 4
K= va? +b?
and

-1 b
6; =cos™! =

a;

Then 47(z) may be expressed as

A-"(z) = [z—(a+jb)] [Z—(a—jb)] ’
=z2_(a+jb) z_(a—jb) z+(ﬂz+b2)

=z~ 2a z+(a2+b2)

=22 —2rcos@ z++°

2 -2

=z [1-2rcos@ 27 +r° 2~
Therefore, from the above analysis we get,

a;, = -2r;co86;

and {27)
=k
Then the error of the i # section of the rcos cascaded second order filter is given as :
e(n) = e_;(n) + ay a;ye_;(n—1) ¥ aly e_;(n—2) WA GLYS (28)
It can easily be shown that the filter parameter a;; where i =/,2,........., L

and /=/,2 are related to the zero positions 7; and &, by
a” = —2 COSB,'

and (29)
qiz =1 I<isL
In the synthesis filter, the zeros of the prediction filter become the poles of the synthesis
fiter. A pole of the transfer function shows:* up as a peak in the
spectrum unless its bandwidth is too wide or it is masked by some other feature of the transfer
function, Thus, the location of the pole r,-eifa' is closely related to the center frequencies F
and bandwidth B; of the peak in the power spectrum which are the speech formants given by
_ b

B;
T
and T is the sampling period.
Therefore, when applying the LMS algorithm to adapt the Reos8 cascaded second
order filter parameters a;; we essentially vary the radii and angels of the transfer function

poles to give a better estimate of the spectral envelope of the speech segment under
consideration.

The constraints that are to be placed on the coefficientsto ensure complex conjugate
zeros of the prediction filter within the unit circle of Z-plane are :
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|a;;| < 2
and O<a, <!

6. Experimental Results

The behavior of the different structures of adaptive digital filters using LAS adaptive
algorithm, has been studied for stationary input signals. Fig.5 shows a block diagram for the
computer simulation model.

One very useful way to monitor the progress of the adaptive process is to plot its
“learning curve”[13]. Since the basic idea of adaptive prediction is to adjust the adaptive filter
parameters so as to minimize the mean square error of the output value as discussed before, it
seems logical to use the mean squared error as a criterion. The expected mean squared error at
each stage of the learning process is thus plotted as a function of the number of adaptive
iterations. '

In order to compare and assess the results shown in Fig.6, the misadjustment (Ma)
criteria, as defined by widrow[14,15] is used. Since the adaptive filters will not perfectly adapt
to the optimum because of random fluctuations due to gradient estimation noise, even after
equilibrium has been approached, the result is a mean square output error greater than the
optimum, The amount by which it is greater is called “Excess Mean Square Error” {EMSE) as
indicated in Fig.6. The measure of the extent to which the adaptive filter is misadjusted as
compared to the optimum is determined by the ratio of the excess mean square error to the
optimur,

Average Excess Mean Square’ Error

MA = o

Optimum Mean Square Error

A series of experiments was carried out by computer simulation to investigate the convergence
behavior of the different filter structures, for stationary input signals x(n} , as shown in Fig.5, a
“white noise” generated by exciting a fixed all-pole recursive filter with Gaussian noise of zero
mean and unit variance. The position of the poles could be varied by changing the coefficient
of the fixed filter,

The cutput from the all-poles fixed filter was passed through the adaptive filter whese
coefficients were set initially to zero. The adaptive filter was allowed to update its coefficients
on a sample-by-sample basis for period ofup to 600 samples. The final 400 sampies in each
experiment is used to find the misadjstment.

Table (4-1) shows values of misadjustment (MA) using different values of the step-size
4. Fig. (7) shows the misadfustment variation with respect to the step size u for the four
structure of adaptive filters.

Table(4-1) Values of Misadjustment (MA) for Different Values of the Step-Size u

H Ladder Lattice Cascade 2nd Rcos
Structure Structure order Structure Cascading
. Structure
0.0005 335 2.2 3.1 0.7
0.001 50.2 2.9 39 B O
0.0025 71 34 49 1.7
0.005 106.7 5.1 6.5 2.4
0.0075 210 6.2 35 3.1
0.01 Over flow 36 103 19
0.015 Over flow 209 over flow 55
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7. Conclusion

This paper developed a new kind of second order cascading filter known as rcos
cascading filter and demonstrated a performance comparison between this filter and ladder,
lattice and cascade second order filter . It has been verified by-computer simulation experiment
that :

1- The misadjustment increases as a step size [ increases in all structures.

2- The rcos cascading second order filter provides better improvements in performance
followed by the cascade second order filter followed by the lattice order followed by the
ladder filter.

3- The rcos cascading structure demonstrated superior, misadjustment fellowed by
lattice filter followed by the cascade second order filter followed by the ladder filter.
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Fig.2 Lattice Structure Prediction Filter of OrderM
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Fig.3 An Adaptive Cascaded Second Order Predictive Filter
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Fig.4 An Adaptive Rcos Cascaded Second Order Predictive Filter
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Fig. 7 The Misadjustment Vanation as a fFunction of step Size u



