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ABSTRACT

Free geodetic networks are still very popular in geodesy, surveying and mapping mainly due
to their unique property of being independent of errors in external data. The free “floating”
network is a network in which only the internal shape is given by measurements of relative nature
(Schmitt, 1982). In such a case, the corrections solution vector to the approximate coordinates is
derived by selecting the best coordinate system. In other words, the term free network refers to a
network whose adjustment is made free from any kind of external constraints. This means that the
network can freely translate, rotate or undergo scale change in space. Optimization means
minimizing or maximizing an objective function which represents the criteria adopted to define the
“quality of a network”. Generally the quality of a control network is characterized by its precision,
reliability, strength and economy (Seemkooei, 2001; Kaplan, 2004). In this paper we focus on
designing an optimal network configuration and optimum observing plan (Combined-Order
Design Problem) in the sense that they will satisfy the present network quality requirement at a
minimum cost. A small free geodetic network are simulated and its optimal design is solved by

nonlinear programming method. The obtained results are discussed and analyzed.

1. INTRODUCTION

In general, the main task of optimal design of a
geodetic network is comprised of:

Q Determination of the optimal distribution of
network points

a Selection of measurement techniques, and

Q Computation of the optimal distribution of the
required observational precisions among
heterogeneous observables.

In the past, it was very difficult, if not
impossible, to solve for all aspects of network
optimization in a single mathematical procedure.
Instead, the problem of network design was divided
into sub-problems in which some progress could be
made. The accepted classification was; (Kunag,
1996; Kaplan, 2004; Rahil, 2005):

e Zero-Order Design (ZOD): the reference

framework of network is defined;

e First-Order Design (FOD): the geometric shape of
the network is defined, and the elements to be
measured are outlined;

e Second-Order Design (SOD): the measurement
accuracies (weights) are determined,;

e Combined-Order Design (COMD): both the First-
and Second-Order Design have to be optimally
solved simultaneously; and

e Third-Order Design (THOD): addition of
observations to improve an existing network.

The aim of this paper is to solve the Combined-
Order Design (COMD) problem of free geodetic
networks in two-dimensional space analytically. In
the proposed approach the nonlinear matrix function
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describing the quality of the network are linearized
around an initial point using Taylor series. Then
using the available optimization methods in
operational research, such as nonlinear programming
method, the optimum corrections to the initial values
are computed.

2. FREE NETWORK ADJUSTMENT

The problem of the adjustment of free networks
characterized by a singular normal equation matrix
was discussed during the last years in a series of
publications. For all publications, the Moore-Penrose
or the pseudo-inverse of singular normal equation
matrix was used (e.g., Bjerhammer, 1967;
Mittermayer, 1972). The number of linearly
independent estimable parameters is determined by
the rank of coefficient matrix within observation
equations. The pseudo-inverse has the property of
belonging to the class of least-squares solutions with
a minimal Euclidean norm of the vector of
unknowns. The pseudo-inverse enables the
construction of solutions for classically unsolvable
adjustment problems.

The generalized inverse of the matrix N is N*
and can be given by:

N" = N(NN)™ @

which achieve the properties:

NN N=N (22)

N"N N =N (2b)

N N = (N"N)I (2¢)

N N" = (N N9 (2d)
Thus the cofactor matrix Q can be obtained as:

Q =N(NN)'N(NN)'N 3)

This obtained cofactor matrix Q achieves the
following properties:

1- It is quadratic, symmetric and singular:

det(Q) =10
2- The solution vector (x):
X=QU
where:

X : has a minimum norm length.
x' X = min.
3- Trace (Q) = min.

The results of free geodetic network adjustment and
their superior quality service as an authentic
reflection (undistorted mirror image) of the
measurements’ quality. The above property is
particularly important today when we employ GPS

measurements for densification of conventional
control, where the later is usually of a relatively
lower quality (Papo, 1999).

3. OBJECTIVE FUNCTION FOR COMD
PROBLEM OF FREE GEODETIC NETS

The purpose of this study is to develop a fully
analytical mathematical procedure to solve for the
optimal improvements to the initial design (initial
locations of points and initial weights). The entire
solution process can be fully automated by the
MATLAB program that was written by the authors
without the need for human intervention. In order to
solve for the improvements analytically, the major
problem is how to bring the quality criteria into a
strong mathematical form, i.e., to establish the
explicit relation between the preset design criteria of
precision, reliability, and cost and the unknown
parameters to be optimized, and that is accomplished
in this paper by using the technique of Taylor series
expansion to linearize the non-linear matrix
equations related to network design, converting
various network quality requirements into constraints
on the unknown parameters to be optimally solved
for.

3.1 Quality Constraints

The global variance-covariance matrix in the
case of free networks is written as:

C,=c2Q,=c (ATPAT “)
where:

Gﬁ . is the priori variance factor that is usually
taken 1.0 at the design stage,

( )" : representing the reflexive generalized
inverse of a matrix.

Note that in two-dimensional space elements of
matrix C, are nonlinear functions of both the
observational weights and station coordinates, that
are embedded in the network configuration matrix A.
Supplied with initial values of both the coordinates
and observation weights, matrix C, can be
approximated using Taylor series restricted to linear
term as follows (Kuang, 1996)

m m

o aC, aC, — 0C,

i=1 ! i=1 7! i=1 ~ !

where:

2 T
C% = os {(A PA)+}xo,yo,Zn,po
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T
PYe (ATPAT OA ) pa+aTp[ 22
IX 62 ox; ox;

dx:
N (ATP A T <y p
(ATPA)+ oA TPA ATp|2A -
Z&z_cg ay; ¥ ay;
" (atpa)* _ -
XY 5P
aaf):( =’ { (ATPA )’ |:AT [2—2} A} (ATPA )‘}xo,yo’pa
Note that:

x°, y°, and z°: are vectors of initial coordinates
of net points selected,

: consists of the approximate values of
weights.

0o

p

Usually, criterion matrix Cs is used as the
precision criteria in this case; the design problem
seeks an optimal configuration matrix A and weight
matrix P such that Cs can be best approximated by
C,. The precision function in this case is:

” C, - GCs ” = min (optimal design) (6)
where:
|| || Represents norm of the matrix.

In order to avoid the precision of some of the
coordinates that becomes disproportionally better
than the others. Schaffrin, 1981 adds another
expression for this criterion so:

vec (Cy) < vec (Cy)

where:
vec. The operation produces a vector by
staking the column of a quadratic matrix
under another in a single column.

(precision control) (7)

Finally, by linearization of the precision criteria,
we can reformulate precision criteria in a compact
matrix and vector form:

|| V.w - u|| = min (optimal design) ()]
View-u 20 (precision control) (9)

Denote:

u= vec (Cs)—vec (C}) (10)
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ac, oC, ac,
vec vec .. vec

0x, oy, Oxp
vec[acx] vec[acx] ..vec[acx]

OYm opy Opy

W = (AXy, AV, eeve AXpmy A¥m, APr...Ap))" (12)

an

Vi= (,er)'v, uy= (1,061,) (13)

O: represents the Khatri-Rao product, which for any
two arbitrary matrices By n and A, (with the
same number of columns) yields a matrix Cyxnm
(Doma, 2004).

3.2 Physical Constraints

Also, the position improvement to be introduced
should be bounded by the topography consideration
that may be established in the field by reconnaissance

i.e.;
} (14)

a; < Ax; < ay,
15)

bli S Ayl S b21 (i=1929 """ ’m)

the above equation can be written as
Ib<w <ub
where:

Ib and ub : lower and upper bounds of
unknowns

3.3 Evalutaion Of Differentials

It is noticeable that before starting the
formulation of mathematical model for optimization
model, we need also partial derivative of
configuration matrix A, and weight matrix P with
respect to coordinates of network depending on types
of observations (Kuang, 1996).

The elements of the configuration matrix A are
formed as linear or nonlinear functions of the
approximate coordinates. The form of functions that
constitute the elements of the configuration matrix A
can be determined geometrically depending on the
specific types of observables proposed. Matrix P
contains the individual observation weights of the
observables (more details in Doma 2004).

4. FORMULATION OF THE MATHEMAT-
ICAL MODEL FOR COMD PROBLEM

In the summary, optimization means that
determination of maximum or minimum of one target
function under some conditions. For example, in the
geodetic network the target function will be on which
represents the network quality i.e. precision,
reliability, and cost.
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This objective function should be designed in
such a way that (Kiamehr, 2003):

e |t must realize the required network quality i.e.
precision, reliability, and cost of network and
deformation parameters.

e Resistance to gross error in observations and
minimize the effects of undetected gross errors.

e It can allow testing of hypothesis with higher
significance.

In the present study, a suitable target function
that includes precision requirements and physical
constraints (topography) has been applied. This
method analytically performs the combined First and
Second Order Design (Vanicek and Krakiwsky 1986)
i.e. the simultaneous optimization of the geometrical
configuration and weight of observation in any
positioning or monitoring network. In fact, the
position of net points selected in reconnaissance
cannot be changed, the mathematical model can be
reduced to the Second Order Design. On the other
hand, if we take the accuracy of measurements as
fixed, the model reduces to the First Order Design.
One may formulate the mathematical model for
optimization as follows:

Minimize: || V.w - u ||

subjected to :

V] W - < 0
16)
Ib<w < ub
where:
Ib and ub : lower and upper

5. APPLICATION EXAMPLE

To show the efficiency of using the proposed
approach for optimization, an example is given in the
current study. This example illustrates the application
of the proposed approach to the optimal design of a
free geodetic network in two-dimensional space. The
above-mentioned model is a single object
optimization problem and for solving it one can use
the mathematical programming method (linear or
nonlinear programming method). Using the Pc-
Matlab version with a personal computer and the
developed mathematical model, a computer program
has been designed and written by authors to solve the
above mathematical model. This program is based on
the variation of coordinate method and the variance-
covariance matrix. A two-dimensional trilateration
network comprising ten points (20 coordinates) is
considered. In this trilateratin network, distances are
observed (Figure, 1). The simulated approximate
coordinates are listed in Table (1). It is assumed that
an EDM instrument will be used to measure all the

distances  with an achievable accuracy
62=(05mm)? + (1ppm. S)?, where S is the distance
computed from the approximate coordinates. The
optimization is done under precision criteria; all the

standard deviations of the coordinate components
must be less than 1.0 mm.

Figure (1): The Two-Dimensional Free Trilateration
Network

Table (1): The simulated approximate coordinates of
network points and the initial standard
deviations of new pints

Initial standard
deviations

Simulated
coordinates

Points of netpoints

X y oy oy
(m) | (m) | (mm) (mm)
P, 2000 : 1000 | 1.59 1.44
P, 5000 100 2.00 1.72
P; 5400 | 2600 | 1.61 1.55
P, 3000 | 3000 | 1.45 1.27
Ps 1800 | 4600 | 1.49 1.23
P 400 2600 | 152 1.48
P, 200 6000 | 1.42 1.65
Pg 2000 ; 7000 | 1.46 1.45
Py 4000 | 5000 | 1.54 1.32
Py 5000 { 7000 | 1.85 1.86

We would like to find optimal configuration
(coordinates shifts) and observational plan (weight of
observations) in this criterion. In the present case
study, we assume that topographical constraints for
shifting of coordinates are in the range from -50 to
50 m in x-, y-directions.
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7. RESULTS AND DISCUSSIONS

In this case, both the network configuration and
the observational plan have to be optimally
determined in order to achieve the above set
precision criteria. The optimization algorithm starts
with an initial design that proposes both the
approximate locations of network stations as well as
the types and precision of observations to be made.
In this case study, we assume that the network
stations have been chosen as shown in Figure (1). As
for the observing plan, the initial weights needed to
initialize the optimization process have been listed in
Table (3) for all the proposed observations.

The obtained optimization results are listed in
Tables (2) to (4) and in Figure (2) and (3).

Table (2) gives the optimal coordinate shifts
solved for each point by optimization model, and the

optimal station coordinates.

Table (2): Coordinate shifts and optimal design of
the network configuration

Final coordinate of
coordinate shifts netpoints

Optimal

Ax(m) | Ay(m) | x(m) | y(m)

-50 -50 1950 950

-50 50 4950 150

50 50 5450 2650

50 -50 3050 2950

-50 50 1750 4649.622

-50 -50 350 2550

5.34 -50 205.34 5950

50 39.01 2050 7039.01

50 40.55 4050 5040.55

-50 - 50 4950 6950

Figure (2) shows the initial and optimal locations
of the netpoints. To clarify the shift (displacement)
for each point of the network, Figure (3) shows the
direction and value of shift for each point of network
with magnification ratio = 10.

Table (3) lists the initial weights, optimal
weights and the repetition numbers. From Table (3),
one can see that, all the observations have positive
weights and these weights are bigger than an initial
weights, this means that there are no deleted
observations in the final observational plane and in
order to achieve the standard deviation of 1.0 mm for
coordinate components, the repetition numbers of the
observations calculated from the optimal weights.

Table (4), gives a comparison between the
required standard deviations of the coordinate
components and the actual achieved. From the
obtained results, it can be found that:

1. The coordinate shifts for each point after applying
the proposed mathematical model are ranged
from 50 m at point P, to 5.34 m at point P;.
These results show clearly that all the final shifts
of the coordinate components are in the range of
the choosen topographical constraint.

2- The standard deviations of the netpoints after
applying the optimization model are ranged from
1.0 mm at point P, to 0.82 mm at point Ps. So,
all standard deviations of the coordinate
components are less than and close to the
required value (1 mm).

10000

1 Initial lecations of netpoints

8000 A Optimal locations of netpoints
Initial gecdetic cbserables
BODO L —— Optimal geodetic obserdes

7000

S000

5000

4000

3000

The verical coordinates (YY)

2000

1000

0

-1000 L L L L
-2000 ] 2000 4000 8000 &000
The horizontal coordinates (X)

Figure (2): The initial and the optimal locations of
netpoints

10000 T T

O Initial locations of netpoints
9000F| & Optimal locations of netpoints
—— Initial line with basic scale
apoo || - - Displacement of initial points with magnification ratio ||

7000

6000

5000

4000

3000

The vertical coordinates ()

2000

1000 -

OF oy J
The magnification ratio = displacement scale/basic scale = 10

1000 " ) ; 2
-2000 0 2000 4000 6000 2000

The horizontal coordinates (%)

Figure (3): Initial locations of netpoints and their
displacement with magnification ratio
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Table (3): The initial weights vector, optimal Table (4): Comparison between the required and
weights vector and repetition no. achievable precisions of the coordinate
components after optimization.

Observation | Initial Optimal design
lines weights

From | To | Panitian | Pioptimay | Repetition

Required Achievable
precision precision
Oy oy
(mm) (mm)
0.89 0.84
0.97 0.87

0.1019 | 0.3399
0.0708 | 0.3060

0.2000 | 0.2505
0.0769 | 0.1542
0.1953 | 0.3216
0.0354 | 0.3065
0.0278 | 0.1170
0.0500 | 0.2253
0.0222 | 0.0740
0.1560 | 0.4225
0.0806 | 0.1522
0.0328 | 0.2113
0.0365 | 0.2886
0.0173 | 0.0346
0.0177 | 0.0216
0.0400 | 0.1599
0.0210 | 0.2263
0.1689 | 0.2413
0.0590 | 0.2112
0.0400 | 0.1662
0.0259 | 0.0864
0.0323 | 0.2627
0.1295 | 0.2423
0.0512 | 0.2236
0.2500 | 0.2500
0.1445 | 0.3109
0.0594 | 0.1803
0.0588 | 0.1424
0.2000 | 0.2242
0.0500 | 0.2296
0.1678 | 0.2369
0.2212 | 0.2322
0.1724 | 0.2210
0.2000 | 0.2693
0.0625 | 0.3199
0.0862 | 0.2997
0.0456 | 0.2826
0.0534 | 0.2126
0.0247 | 0.0311
0.2358 | 0.3626
0.0648 | 0.3168
0.0416 | 0.2469
0.1250 | 0.2848
0.1111 | 0.3347
0.2000 | 0.2198

0.91 0.82

1.00 0.91
0.95 0.88
0.87 0.84
0.84 0.90
0.87 0.87
0.92 0.87
0.92 0.93

S |[C|R || (N [A W] N -

8. CONCLUSION

Free geodetic networks are still very popular in
geodesy, surveying and mapping mainly due to their
unique property of being independent of errors in
external data.

In this paper, the presented mathematical model
deals with the simultaneous optimization of the
network configuration (FOD Problem) and
observational weights (SOD Problem), this problem
is known as COMD Problem. For practical
applications, after appropriate network quality
criteria are given, this optimization procedure gives
the optimal weights or standard deviations for each
observable as well as the optimal position
improvements of the initially selected points to
obtain an optimal configuration of the network.
Therefore, the optimization procedure developed is
very flexible and practical. It is preferable to use the
proposed mathematical model instead of the trial and
error method.
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