
ERJ 
Engineering Research Journal 

Faculty of Engineering 
Minoufiya University 

Engineering Research Journal, Vol. 31, No. 1 January 2008, PP 39-47  
© Faculty of Engineering, Minoufiya University, Egypt 

39 

 
USE OF EXTREME PROGRAMMING IN SOFTWARE ENGINEERING 

EDUCATION: A PILOT STUDY 
Hassan I. Mathkour Hatim A. Aboalsamh Ghazy M.R. Assassa Hmood Al Dossari

mathkour@ccis.ksu.edu.sa hatim@ccis.ksu.edu.sa ghazy@ccis.ksu.edu.sa hzs24@yahoo.com 

Department of Computer Science,College of Computer and Information Sciences, 
King Saud University, Saudia Arabia 

 
ABSTRACT 
The recent success of Extreme Programming (XP) methodology within the software industry has 
exercised a growing pressure and demand on educational institutions to introduce XP practices in 
software engineering courses. This paper reports an empirical pilot study conducted to apply XP in 
one of the software engineering course-projects offered in the department of Computer Science at 
the College of Computer and Information Sciences, king Saud University. The study was 
conducted on four groups of senior pair-students who were asked to develop a simple Automatic 
Teller Machine “ATM” system. The project lasted eleven weeks and included three releases. 
Results and feedback from students are reported and recommendations are highlighted.   

أو القصوى، في صناعة البرمجيات المعاصرة إلى إيجاد ضغوط         لقد أدى نجاح استخدام طرائق البرمجة المفرطة،        
متنامية وطلب متزايد على تعليم استخدام هذه الطرائق وتضمينها فـي المقـررات الدراسـية المتعلقـة بهندسـة                   

ويعرض هذا البحث لمنهج هذه الدراسة التجريبية الارتيادية ونتائج تطبيق هذا            .البرمجيات في المؤسسات التعليمية   
في واحد مـن    )  البكالوريوس(لأسلوب في البرمجة على مجموعة من الطلبة في مرحلة الإجازة الجامعية الأولى             ا

وقد تم إجراء هذه التجربـة فـي قسـم علـوم             .مقررات هندسة البرمجيات المحتوى على مشروع تخرج عملي       
وقـد  .  المملكة العربية السعودية   الحاسب، بكلية علوم الحاسب والمعلومات، جامعة الملك سعود بالرياض، عاصمة         

أجريت التجربة على أربع مجموعات مختلفة، كل مجموعة مكونة من زوج من طلبة السنة النهائية بالقسم، وكلفت                 
وقد استغرق المشروع زمنا قدره أحد عشر أسبوعا، واحتـوى           .المجموعات جميعا بتصميم نظام آلة صرافة ذاتية      

وقد تم هنا إبراز أهم نتائج هذه الدراسة، بالإضـافة إلـى آراء              .النظام المطلوب على ثلاثة إصدارات متعاقبة من      
 .الطلبة المشتركين التي وصلت إلى الباحثين بطريق التغذية المرتدة، كما تم إلقاء الضوء على التوصيات اللازمة

Keywords: Extreme Programming, XP, Software Engineering, Students Projects, Educational 
Environment. 

 
1. INTRODUCTION 
The development of software systems is a risky 
endeavor that usually encompasses constraints of 
schedule and budget besides risks of volatile 
requirements. Agile programming was proposed 
recently to remedy the problems encountered in 
traditional development methodologies. Extreme 
Programming (XP) is considered as the most famous 
and prominent agile methodology. Since the 
development of XP methodology by Kent Beck [1], 
researchers in universities and managers in software 
organizations tried to evaluate the success of this new 
model. Researchers concluded that using XP in 
educational domain have many benefits [2]. In this 
paper we discuss an experiment for adopting XP 
methodology in course projects at a senior level 
software engineering course.  
This paper is organized as follows: Section 2 
explains what is extreme programming and 
introduces the twelve XP practices; section 3 reviews 
related work of the use of XP in education; section 4 
gives details on the current pilot study set up; section 

5 discusses the results; and finally section 6 presents 
the conclusion and recommendations. 

2. EXTREME PROGRAMMING 
Extreme Programming is considered as the most 
popular of the various flavours of “agile” software 
methodologies. Agile/XP methodologies are 
considered as bottom-up software development 
approach. In fact, practitioners rather than academics 
proposed the original ideas and their subsequent 
refinements of Agile/XP methodologies. Therefore, 
they might appear more credible to practitioners - 
e.g., developers, manages, customers – than if they 
were the result of academic research. For a counter 
example, recall the formal methods for requirements 
specification, most of which were designed in the 
academia, but few of which were ever accepted by 
the community of practitioners [17]. Extreme 
Programming is a discipline of software development 
based on values of simplicity, communication, 
feedback, and courage. It works by bringing the 
whole team together in the presence of simple 
practices, with enough feedback to enable the team to 



H.I. Mathkour, H.A. Aboalsamh, G.M.R. Asassam, H. Al Dossari, "Use Of Extreme Programming in Software  " 

Engineering Research Journal, Minoufiya University, Vol. 31, No. 1, January 2008 40 

see where they are and to tune the practices to their 
unique situation [18]. XP includes a set of values, 
principles and practices for rapidly developing high-
quality software. XP is extreme in the sense that it 
takes many well-known software development "best 
practices" to their logical extreme [3].  
XP was developed with four core values in mind: 
Communication, Simplicity, Feedback and Courage. 
Communication is the first XP value. For example, 
XP takes the “best practice” of “good communication 
with the customer” to an extreme by recommending 
that the customer works in the same room as the 
programmers, interacting with the team as necessary. 
Besides, each morning programmers participate in a 
short stand up meeting; this enhances the 
effectiveness of communication as participants 
become closer.  

2.1. XP Practices 
From the four XP values, twelve practices were 
derived [4, 5] as discussed below 
1. The Planning Game: the business and 

development teams get together to decide on what 
features of the required system will be of 
maximum value to the business. The techniques 
for gathering requirements in XP are a radical 
departure from that of more traditional software 
methodologies. First, customer requirements are 
written in natural language, informal "User Story" 
cards, similar to use cases [6]. These cards are 
never formalized, no relationships or dependencies 
between the cards are identified. Software 
developers place time estimates and customers 
assign priorities to each card. Together, the 
developers and the customers play the “Planning 
Game" in which the customer chooses those User 
Stories that comprise the most important content 
for a short, incremental deliverable of about 3-4 
weeks. Each short implementation increment is 
accepted and tried by the customer. Then, the 
remaining User Stories are re-examined for 
possible requirement and/or priority changes and 
the Planning Game is re-played for the next 
implementation increment. 

2. Small Releases: a simple system containing a 
useful set of features is put into production early 
and updated frequently in short cycles. XP 
heightens the pace of spiral development by 
having short releases of 3-4 weeks. At the end of 
each release, the customer reviews the interim 
product, identify defects, and adjust future 
requirements. 

3. Metaphor: each project has a “system of 
names” and description which help to guide the 
development process and communication between 
all parties. XP believes that each application 
should have conceptual integrity based on a 

simple metaphor, which explains the essence of 
how the system works. For example, one large XP 
project was a payroll system for Chrysler. The 
metaphor for this project was that the payroll 
system was like an assembly line where hour parts 
were converted to dollar parts, all parts were 
assembled and a paycheck was produced. 

4. Simple Design: the simplest design is always used 
to build the application as long as it meets the 
current business requirements. Do not worry about 
future requirements as requirements change with 
time anyway. Re-factoring practice (see below) 
will ensure that the design is of a high standard. 
XP strives for supremely simple designs. They 
stress that programmers should not try to predict 
future needs and to produce a more complicated 
design accordingly. Developers should follow the 
simple design practice and “Do the simplest thing 
that could possibly work.” 

5. Testing: XP follows a “Test-first” approach, that 
is before new features are added, tests are written 
to verify the software. The software is then 
developed to pass these tests. Software developed 
with XP is validated at all times. Two types of 
testing is carried out, unit and functional testing.  
5.1.  Unit Testing. Extensive, automated white 

box test cases are written before production 
code is produced. These automated tests are 
added to the code base. Before a programmer 
can integrate their code into the code base, 
they must pass 100 % of their own test cases 
and 100% of every test that was ever written 
on the code base. This ensures that the new 
code implements the new functionality without 
breaking anyone else’s code.  

5.2. Functional Testing. Traditionally, project  
management techniques have been based on a 
developer’s own assessment of how much of 
their task has been completed. Alternately, XP 
promotes the use of functional test case 
tracking for calculating project completeness. 
XP terms this assessment “Project Velocity.” 
Functional test cases are based on customer 
scenarios. When a functional test case is 
successfully passed, it can be considered that a 
specified functionality has been implemented 
properly. Project completeness is based on the 
percentage of functional test cases that have 
been passed. Team members can 
unequivocally compute this measure. 

Automated Testing: It isn't enough to write tests: 
you have to run them. Unit tests are all collected 
together, and every time any programmer releases 
any code to the repository (pairs typically release 
twice a day or more), every single one of the 
programmer tests must run correctly. One hundred 



H.I. Mathkour, H.A. Aboalsamh, G.M.R. Asassam, H. Al Dossari, "Use Of Extreme Programming in Software  " 

Engineering Research Journal, Minoufiya University, Vol. 31, No. 1, January 2008 41

percent, all the time! Developer have interest to 
use appropriate automated testing frameworks, 
e.g. JUnit [23] and NUnit [24], to control and 
simplify the task of repeated testing  and 
continuous integration. This means that 
programmers get immediate feedback on how 
they're doing. Additionally, these tests provide 
invaluable support as the software design is 
improved. 

6. Refactoring: Refactoring is the process of 
improving the code’s structure while preserving 
(not improving) its function [7]. XP advocates 
refactoring code continuously and explicitly. This 
is a technique for improving the design of an 
existing code-base. Its essence is applying a series 
of small behavior preserving transformations that 
improve the structure of the code. By doing them 
in small steps you reduce the risk of introducing 
errors [8].  

7. Pair Programming: programmers using XP are 
paired and write all production code using a single 
machine per pair. This helps the code to be 
constantly reviewed while being written. Pair 
Programming has proved to produce high quality 
code with little or no decrease in productivity [9].  

8. Collective Code Ownership: all the code 
belongs to every member of the team, no single 
member of the team owns a piece of code and 
anyone can make changes to the codebase at any 
time. This encourages everyone to contribute new 
ideas to all segments of the project.  

9. Continuous Integration: software systems are 
built and integrated several times a day; at the 
very least all changes are integrated into the  main 
codebase, on an integration machine, at least once 
a day. As a result, there are many product builds 
each day. Each build is tested using the associated 
test cases.  

10. 40-Hour Week: programmers in an XP project 
normally adhere to a 40-hour working week in 
order to maintain productivity and avoid burn out. 
It was found that during crunch periods when 
overtime is worked, the artifacts that are produced 
are poor. 

11. On-site Customer: one or more customers 
who will use the system being built are allocated 
to the development team. The customer helps to 
guide the development and is empowered to 
prioritize state requirements and answer any 
questions the developers may have. This ensures 
that there is effective communication with the 
customer and, as a result, less documentation will 
be required.  

12. Coding Standards: everyone on an XP project 
use the same Coding Standards which makes it 

easy to work in pairs and share ownership of all 
code. One should not be able to tell who worked 
on what code in an XP project. An agreed upon 
coding standard should be defined and followed. 

2.2 Other XP Strategies  
Incremental Change: Big changes can be risky and 
prone to failure, so, only small changes are 
recommended.  
Small Initial Project Investment: XP projects are 
started with a small number of developers and then 
built up, as more developers are required.  
Stand up Meetings: meetings are held physically 
standing up to keep the meeting brief, at the same 
time each day. The purpose of this is for members to 
report problems but no solutions are proposed. The 
developers then leave the meeting and ponder on the 
solutions.  
Tracking Progress: a designated team member is 
responsible for tracking the progress of other team 
members.  
Minimal Documentation: documentation is kept to 
the barest minimum.  
Teaching Strategies: to enable staff to learn, e.g. 
how much testing should be done. 
Experiment: experiments are carried out to reduce 
or eradicate the risk of incorrect technological 
decisions.  
3. XP IN EDUCATIONAL ENVIRONMENT 
Many studies have been carried out on the use of XP 
in educational environment [11, 12, 13, 14, 15]. The 
study of [11, 13]  concluded that it is not advisable to 
teach and practice entire traditional and agile 
methodologies in one semester course, and suggested 
a hybrid process that includes both agile and 
traditional practices if the students had only one 
software engineering course. 
The results of [12, 14] showed that the planning 
game and the 40-hour week practices were the most 
successfully established XP-practices; in particular 
the continuous integration and pair programming 
practices were not successfully followed.   
The study of [13] for ten-week software engineering 
course indicated that the XP teams were unable to 
adopt many XP practices, with weak customer 
engagement, a lack of collective code ownership, and 
batch integration.   
The work of [14] showed that it was possible to use 
the XP methodology successfully for final year 
capstone projects, but that students need to be 
actively coached in the skills necessary to practice 
XP. 
According to [15], the key factors producing 
successful XP outcome for a project course were: 



H.I. Mathkour, H.A. Aboalsamh, G.M.R. Asassam, H. Al Dossari, "Use Of Extreme Programming in Software  " 

Engineering Research Journal, Minoufiya University, Vol. 31, No. 1, January 2008 42 

skilled tutors were able to act as Extreme 
Programming coaches for the teams; timetabling and 
physical facilities that strongly support group 
working; and external clients who were willing and 
able to engage with the Extreme Programming 
processes. 
The pilot study of [22] on the perception of extreme 
programming used automated testing and pointed out 
that JUnit [23] was used for unit testing and Http 
Unit [25] for acceptance testing. Students wrote the 
unit tests whereas acceptance tests were written by 
the customer. 
The empirical study of [26] on distributed pair 
programming showed that pair programming 
provides many benefits, both to the programmers and 
to the product that they develop.  A software tool that 
allowed the pair to work from separate locations was 
developed and some initial results were presented 
from a distributed pair programming experiment 
conducted on students in an introductory 
programming class used such a tool. 

4. THE EXPERIMENT 
A description of the experiment setup is given 
hereafter, more details may be found in ref [19, 20]. 
The setup includes student's previous exposure to 
XP, students’ background, duration of the 
experiment, ATM project scope, group formation, 
tools, and customer and XP mentor activities. 
Previous Exposure to XP 
Students participating in this experiment had no 
previous exposure to XP. Therefore, they had been 
introduced to the practices of XP in the first two 
weeks of study. As for instructors, the experiment is 
the first one in using XP for developing course 
projects. 
Students’ Background 
The experiment was conducted on senior-level class 
of eight students enrolled in CSC540 Software 
Engineering course offered by the department of 
Computer Science at the college of Computer and 
Information Sciences, king Saud University.   
Students' background related to the experiment 
includes passing two programming courses in C 
language, CSC 112 and CSC 113,  and a first course 
in Software Engineering, CSC342, as well as two 
database courses CSC380 Fundamentals of Database 
Systems  and CSC383 Advanced Database 
Management Systems. Students also had completed 
their BSc graduation projects, CSC 496, CSC 497, 
using traditional methodologies, mostly waterfall 
approach.   
Duration of the Experiment 
The experiment was conducted within a timeframe of 
a single semester, fall 2004. Within CSC540 software 

engineering course, students are usually required to 
present assignments, discuss papers, and develop a 
course project. In addition, they have to pass midterm 
and final exams. Typically, students would have 
some 10-12 weeks conducting the course project. In 
our experiment, the project lasted eleven weeks 
including two weeks at the beginning for project and 
methodology definitions and one week at the 
semester end for presentation. It should be noted that 
the current experiment may suffer from the fact that 
the time allowed for the experiment is relatively short 
(eight weeks) thus allowing only for small scale 
projects. 
ATM Project Scope 
Since the aim of this study was not to deliver a 
software product to a customer, a simple but rather 
real problem had to be given to the students 
participating in the experiment. In the context of 
simple problem, it has been   pointed out [11] that the 
disadvantage of a simple problem, such as a roman 
number converter, is that somehow it is not real 
enough - the consequence is that students loose 
confidence after they return from their course 
because some of the subtle aspects of XP have not 
been explored. Taking this into consideration, we 
selected a real-world problem, namely, simulation of 
an ATM system for which students were asked to 
develop the corresponding system. The system scope 
was limited to providing the following basic services 
to the user: ATM access ' login', change PIN, cash 
withdrawal, cash deposit, transfer to another account, 
balance inquiry, and mini statement. 
Group Formation: The 8 students participating in 
the experiment were asked to form 4 groups each 
comprising 2 students. During the first two weeks of 
study, the XP methodology was rapidly explained 
and a comparison with the waterfall model was 
highlighted. Also the ATM project was succinctly 
presented. Three groups of students selected to 
develop the ATM project using the XP methodology 
while the fourth group selected the WF approach. 
Tools 
Because of time constraints to complete the project 
within the semester time frame, we preferred to allow 
students to select the tools they have more experience 
with. The three XP teams developed their projects 
using the different tools. Team 1:   ASP.net and SQL 
Server, Team 2:  Delphi and Access, and team 3: 
Java and SQL Server. The WF team worked with C# 
and Access database. 
The fact that the three groups used different tools 
may be problematic vis-à-vis the accurate 
interpretation of collected measurements. It should be 
noticed that this is a typical problem within an 
educational environment at MSc level where students 
have differences in background and come from 



H.I. Mathkour, H.A. Aboalsamh, G.M.R. Asassam, H. Al Dossari, "Use Of Extreme Programming in Software  " 

Engineering Research Journal, Minoufiya University, Vol. 31, No. 1, January 2008 43

different environments with different software tools 
culture. In the beginning, we tried to impose unified 
tools to all students but we faced resistance to this 
and students claimed that this would affect their 
productivity and consequently the measurements.  
Customer and XP mentor Activities 
In carrying out this experiment, two functions had to 
be defined, namely the customer and XP mentor 
functions.  The customer and, to some extent, the XP 
mentor functions were assumed by the first three 
authors while the fourth author partially covered the 
activities of XP mentor. 

5. RESULTS AND DISCUSSIONS 
This section presents the results and discusses the 
following issues: partial adoption of XP, on-site 
customer, planning game, Shodan and IBM surveys, 
customer and communication level and response to 
changes in requirements. 
Partial Adoption of XP “sub-practice”  
In the current experiment, only the XP practices 
pertinent to small-scale projects were focused on 
“sub-practice”. The sub-practices included those 
contributing to rapid feedback and learning process, 
namely, planning game, pair programming, collective 
code ownership, unit testing, simple design, re-
factoring, and use of coding standards. 
On-Site Customer  
Due to real-world constraints, there was no real 
customer that could be present 100% of the time on 
site; as indicated above, the authors simulated 
customer and XP mentor activities. On the average, 
students had three contact hours per week with the 
simulated customer and 1-2 hours with the XP 
mentor. To enhance communication between 
development teams and 'simulated' customer, we 
established a web site where we posted the stories 
and suggested project releases and deadlines; we also 
exchanged email messages extensively. In addition, 
in order to avoid delayed decisions for questions 
requiring an immediate response, we allowed 
students to contact us by phone, mobiles, and SMS 
messages.  
Planning Game  
The ATM requirements were discussed with the XP 
groups and many proposals for releases were 
evaluated. Based on the time frame of the project and 
the availability of students, students agreed upon 
three releases as shown in Table 1. After detailed 
discussion, the students identified seven stories to be 
included in the three releases. Release 1 included 
three stories, ATM access 'login', change PIN, and 
cash withdrawal. Release 2 included two stories, cash 
deposit, and transfer to another account. The last two 
stories, balance inquiry and mini statement, were 

included in Release 3.  It should be mentioned that 
the planning game practice was implemented with 
full success with all XP groups. In the classroom, we 
discussed with students a template for the customer 
story and students 'developers' added some features 
they judged necessary for the understanding of the 
requirements; the template depicted in Figure 1 was 
adopted by the student. In addition, students 
developed many templates to be used for the 
measurement process, e.g. the template depicted on 
Figure 2 for story tasks planning and tracking. The 
template shows the breakdown of story tasks into 
different activity types and allows for multiple 
estimations as the project advances in time; this 
would help highlight the improvement of estimation 
as students gain more experience along time. 
Results of Shodan and IBM Surveys 
To assess the adherence of students to XP practices 
and to get a feedback on students’ acceptance of the 
XP methodology, two surveys were used, namely, 
Shodan Adherence survey and IBM survey. Details 
on both surveys are given hereafter. 

Customer Story Card (by customer) 
 
Story Card No:  
Story Card Name: 
System: 
Date: 
Customer:  
Priority (High/Medium/Low): 
Type of activity  

o New Story/ 
o Fix Defect (related St) – e.g. Fix 5 
o Enhance New Feature (related St) e.g. 

Enhance  3: 
Short Description (max 3 sentences): 
 
Story Technical Description  (by developers) 
 
Pre-conditions 
1.  
… 
Story Description 
… 
Post-conditions 
1. 
… 
Estimated development effort (man-hr):  
Effort writing technical SC (man-hr): 
Failure Risk Impact (High/Medium/Low):   
Acceptance Black-box  Test Cases No:  
Notes: 

Figure 1: Template used for customer story card. 



H.I. Mathkour, H.A. Aboalsamh, G.M.R. Asassam, H. Al Dossari, "Use Of Extreme Programming in Software  " 

Engineering Research Journal, Minoufiya University, Vol. 31, No. 1, January 2008 44 

Table 1:  Project Schedule and Deliverables 

Week Deliverables of XP Groups 

W1- W2 Define project objectives and methodology 

W3 Planning Game: Task estimation cards 

W6 Release 1 

W9 Release 2 
W10 Release 3 
W11 Full system and presentation  

Shodan Adherence Survey 
Shodan Adherence Survey [16] is designed to assess 
how far the students followed XP practices. It is a 
subjective means of gathering adherence information 
from team members. The term 'Shodan' means 'black 
belt'.  The survey is composed of 15 questions on the 
extent to which each individual on a team uses XP 
practices. In order to emphasize the importance of  
testing in XP, testing has been split into three testing 
categories totalizing 12%, and stand up meetings 
were added to the original 12 practices. A survey-
respondent self-reports the extent to which he or she 
used the practice, on a scale from 0% (never) to 
100% (always). An overall score for the survey is 
computed via a weighted average of each response: 

 
Shodan Survey Questions 
For each practice in Table 3, students were asked to 
indicate their perceptions of each practice using a 
scale between 0 and 10 as shown in Table2. 

Table 2: Shodan survey scale 

Sc
al

e  
 
Description Sc

al
e  

 
Description 

10  
9 
8 
7 
6 
5 
 

Fanatic (100%) 
Always (90%) 
Regular (80%) 
Often (70%) 
Usually (60%) 
Half ‘n Half 
(50%) 

4 
3 
2 
1 
0 

 

Common (40%) 
Sometimes (30%) 
Rarely (20%) 
Hardly ever (10%) 
Disagree with using 
this practice 

Table 3: Shodan survey questions. 

 XP Practice Shodan 
weight 

1 Automated Unit Tests 6% 
2 Customer Acceptance Tests 3% 
3 Test First Design 3% 
4 Pair Programming 12% 
5 Re-factoring 10% 
6 Release Planning 6% 
7 Customer Access (on site) 6% 
8 Short Releases 6% 
9 Stand Up Meeting 6% 
10 Continuous Integration 10% 
11 Coding Standards 5% 
12 Collective Ownership 8% 
13 40-Hours Sustainable Pace 5% 
14 Simple Design 8% 
15 Metaphor 6% 
 Total 100 % 

 

 
Story Effort Estimation & Actual Effort 

(To be completed by developers) 
 Story:                                                 XP Group:                                             XP Pair: 

Task  

Estimated Effort 
Man-hr 

Actual 
Effort 
Man-

hr 
Planning 

Date Task Name 

Task 
Type 
(Select 
from 
below) 1st 2nd 3rd 4th  

Comment 

         
         
Story total effort            
Task type: PLN (Planning), ANL (Analysis), DSG (design), IMP (Implementation), ATW (Acceptance 
‘Functional’ Test writing), UTW (Unit Test writing), ATR (Acceptance Test run), UTR (Unit Test run),  
DOC (Doc writing), LRN (Learning), OTH (Others: specify). 

Figure 2: Template used for story effort estimation & actual effort. 
 
  



H.I. Mathkour, H.A. Aboalsamh, G.M.R. Asassam, H. Al Dossari, "Use Of Extreme Programming in Software  " 

Engineering Research Journal, Minoufiya University, Vol. 31, No. 1, January 2008 45

Shodan Survey Results 
Results of the Shodan survey are displayed on Figure 
3 and show that students’ overall adherence to XP 
practice in the current study was on the border of 
being acceptable with an average of 55 - 60% for the 
first two releases. Figure 3 suggests that there is a 
slight variation in adherence while moving from 
Release 1 to Release 2 and an appreciable 
improvement of the order 20% at Release 3; moving 
from near 60% at Release 1 to near 80%  at Release 
3. This may be attributed to the more experience 
student got with the project and XP practices as they 
move from the first release to the last release.  

0
10
20
30
40
50
60
70
80
90

100

1 2 3

Release number

A
dh

er
en

ce
 % Team 1

Team 2

Team 3

 
Figure 3: Change of adherence with releases. 

IBM Survey Results 
The XP teams were asked to respond to the IBM 
survey question: What do you think about Extreme 
Programming? The results are as follows: No for the 
question 'I tried it and I hate it', No for the question 
'It's a bad idea, it'll never work', Yes (33%) for the 
question 'It's a good idea, but it'll never work', and 
finally Yes (66%) for the question 'I've tried it and 
love it'. 
Customer and Communication Level 
We tried to compensate for the lack of on-site 
customer by various means of communication 
including direct contact within the lecture time, 
mentoring, web communication, phone, mobile, and 
SMS messages. In our opinion, we succeeded in 
compensating for the lack of a real on-site customer. 
However, the true situation is that we are instructors 
attempting to replace the real customer and we are 
not present 100% of time on-site with developers. 
Under this assumption, we asked the developers to 
produce our requirements as instructors. The real 
customer will not be such knowledgeable about 
requirements and underlying XP practices. Feedback 
from the XP teams about the communication level 
with the 'simulated' customer showed an overall high 
acceptance. In conclusion, we think that this practice 
is reasonably met in the current experiment.  

Response to Changes in Requirements  
Two weeks before the system delivery (during XP 
release 3), we introduced an additional small 
functionality in the requirements of the last story and 
we asked XP and WF teams to incorporate the extra 
functionality in the system. Unfortunately, WF team 
was unable to respond to the changes in requirements 
while the three XP teams were successful at adding 
the extra functionality.  
Feedback 
Feedback from students showed that they have 
practiced some of the XP practices before even 
knowing of the existence of such methodology; in 
particular pair programming that they used to 
practice within their graduation projects. Survey 
showed that they liked and are willing to work XP in 
their future developments. We quote here some of the 
comments we received from students:  
 “In general, we are very comfortable with XP 

methodology and we will use it in future projects, 
if nothing else is specified by the user's non-
functional requirements. The main reason is that it 
is code-oriented and leads to developing software 
without the upfront activity of  detailed analysis, 
design and heavy documentation that are 
traditionally needed  as in the waterfall 
methodology, for example",  

 "In general, I like the XP and I would like to take 
another project that uses the XP model, in 
particular I liked the planning game and small size 
of documentation", 

 "The use of the XP in this project was good one,  
The project was small project, easy to manage, and 
easy to implement",  

 and finally " The XP has some practices that we 
enjoy doing like game planning, small releases, 
incremental  integration and sustainable pace". 

6. CONCLUSION AND RECOMMENDATIONS  
The current study aimed at investigating applying XP 
methodology using three releases and two-to-three 
weeks development iterations. Three XP teams each 
composed of pair senior students worked their 
Software Engineering course projects in a time frame 
of eleven weeks. We acted as the customer and XP 
mentor while the students represented the 
development team. The aim of the project was to 
produce an ATM system. The results of the 
experiment and the many discussions we had with 
students suggest that XP is very suitable for such 
small-scale projects. We guess the main challenge in 
XP is the on-site customer and work the planning 
game with inexperienced customers. 
It was observed that XP teams produced the required 
product with full functionality and less work. In 



H.I. Mathkour, H.A. Aboalsamh, G.M.R. Asassam, H. Al Dossari, "Use Of Extreme Programming in Software  " 

Engineering Research Journal, Minoufiya University, Vol. 31, No. 1, January 2008 46 

addition, the response to changes in requirements 
was observed to be more successful when applying 
XP methodology as compared to the WF 
methodology. An important observation is that the 
adherence to XP practices increased with the 
progress of releases. Because of the small size of the 
sample, additional experiments should be carried out 
in order to generalize the outcome. We have plans to 
carry out additional experiments at junior level 
students.  
The researchers concluded that using XP in 
educational domain have many benefits like a strong 
commitment to the project development on the part 
of both students and supervisors, less skilled students 
showed more progress than probably would have 
been the case using a traditional methodology, and 
XP teams produced better software than those using 
traditional model. 
The fact that the three groups used different tools 
may be problematic vis-à-vis the interpretation of 
collected measurements; this is a typical problem 
within an educational environment at Masters level 
where students have differences in background. We 
felt that trying to impose unified tools will affect 
their productivity and consequently many of the 
measurements.  
We would like to highlight the following 
recommendations: 

 Extreme Programming practices should be 
incorporated more solidly into earlier courses of 
the curriculum. 

 Additional experiments are needed to provide 
some insight on the use of XP in educational 
domain and to establish some useful XP metrics. 

 There is a noticeable lack of experiments on the 
use of XP for large scale projects; therefore, future 
software experiments should target filling this 
gap. 

 Software cost estimation models are needed to 
reflect the effect XP practices on cost; in 
particular pair programming and small releases 
practices. 

 Traditional project management practices should 
be discussed and adapted to reflect the 
particularity of XP methodology. 

 Experiments with unified tools should be 
investigated to guarantee better interpretation of 
measurements and results. 

 

Acknowledgements 
This work was supported with funds from KSU-
CCIS Research Center grant RC10/424-425.  

7. REFERENCES 
[1] Beck. Kent, Extreme Programming Explained. 

ISBN 0-201-61641-6, Addison-Wesley, 2000. 
[2] Williams, L., Kessler, R. “Experimenting with 

Industry’s Pair-Programming Model in the 
Computer Science Classroom”, Journal on 
Computer Science Education, March 2001. – 
(Springer LNCS 2418 - Proceedings of Extreme 
Programming and Agile Methods - XP/Agile 
Universe 2002: Second XP Universe and First 
Agile Universe Conference, Chicago, IL, USA, 
August 4-7, 2002.) - Available URL: 
collaboration.csc.ncsu.edu/laurie/Papers/CSED.
pdf. 

[3] Brewer, John and Design, Jera “Extreme 
Programming FAQ”, 2001, Available: 
http://www.jera.com/techinfo/xpfaq.html. 

[4] Williams, L., and Upchurch, R.  “Extreme 
Programming For Software Engineering 
Education?” Proceedings of the 31st 
ASEE/IEEE Frontiers in Education Conference,  
Reno, Nevada, 10–13 October 2001. 

[5] Akpata, E and Riha, K  “Can Extreme 
Programming be used by a Lone Programmer?“ 
,Systems Integration  2004, Prague University of 
Economics, June, Prague, Czech Republic, pp. 
167-175. 

[6] Jacobson,I., Object-Oriented Software 
Engineering: A Use Case Driven Approach, 
ACM Press, 1992. 

[7] Jeffries, R., Anderson, A., and Hendrickson, C., 
“Extreme Programming Installed”, Reading, 
Massachusetts, Addison-Wesley, 2001. 

[8] Fowler, M. Refactoring: Improving the Design of 
Existing Code, Addison Wesley, Reading, MA, 
2000 -  Details available at:  
http://www.martinfowler.com/books.html/refact
oring  and  at: 
http://www.xp2003.org/conference/TutorialsDes
cr.html#T22  

[9] ManLui, Kim and Chan, Keith C.C. ,“When does 
a pair outperforms two individuals?”, in Proc. 
Fourth International Conference on Extreme 
Programming and Agile Processes in Software 
Engineering, Genova, Italy, 2003. Available: 
http://www.xp2003.org/slides/15.pdf  

[10] Cockburn, Alistair., Williams, Laurie. "The 
Costs and Benefits of Pair Programming."  
Proceedings of the First International 
Conference on Extreme Programming and 
Flexible Processes in Software Engineering 
(XP2000), 2000. Available at URL 
:http://collaboration.csc.ncsu.edu/laurie/Papers/
XPSardinia.PDF  



H.I. Mathkour, H.A. Aboalsamh, G.M.R. Asassam, H. Al Dossari, "Use Of Extreme Programming in Software  " 

Engineering Research Journal, Minoufiya University, Vol. 31, No. 1, January 2008 47

[11] Srikanth, H.. William, L.. Wiebe, E. Miller, C. 
Balik, S. "On Pair Rotation in the Computer 
Science Course.”, IEEE 17th Conference on 
Software Engineering Education and 
Training(CSEET'04), 2004. 

[12] Shukla, A. and Williams L. D. "Adapting 
Extreme Programming For A Core Software 
Engineering Course." Conference on Software 
Engineering and Training (CSEE 2002), 
Covington, KY USA, 2002. 

[13] Lappo, P., "No pain, no XP: Observations on 
teaching and mentoring extreme programming 
to university students", Proceedings of the Third 
International Conference on eXtreme 
Programming and Agile Processes in Software 
Engineering, Universit´e de Cagliari and Free 
University of Bolzano-Bozen, 2002, pp. 35–38. 

[14] Noll, J. and Atkinson, D. C. "Comparing 
extreme programming to traditional 
development for student projects: A case study" 
, Extreme Programming and Agile Processes in 
Software Engineering: Proceedings of the 4th 
International Conference, XP 2003’, Lecture 
Notes in Computer Science, Springer-Verlag,  
2003, pp. 372–374. 

[15] Keefe, K.. Dick, M. "Using Extreme 
Programming in a Capstone Project”, 
Proceedings of the Sixth Australian Computing 
Education Conference, Darlinghurst, Australia: 
Australian Computer Society, 2004, pp. 151-
161. 

[16] Shodan Input Metric Survey, Available URL: 
http://C2.com/cgi/wiki?ShodanInputMetrics 

[17] Misic V.B, “Perception of Extreme 
Programming: A Pilot Study”, Engineering 
Management Conference, 2005. Proceedings. 
2005 IEEE International, Volume 1, Sept. 11-
13, 2005 pp. 307 – 312. Available URL:  
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?pu
number=10425 

[18] Ron Jeffries, “What is Extreme Programming?”, 
Available URL: http://www.xprogramming.com 

[19] Ghazy Assassa, Hassan Mathkour, Hmood Al 
Dossari, “Extreme programming: A case study 
in software engineering courses”, Proceedings 
of the 1st National Information Technology 
Symposium,   NITS, Riyadh, Saudi Arabia, 
2006, pp. 233-240. 

[20] Ghazy Assassa, Hassan Mathkour, “An 
Experimental Study On The Use Of Extreme 
Programming in Students’ Software Projects”,  
RC10/424-425, Research Center, College of 
Computer and Information Sciences, King Saud 
University, 2006. 

[21] Hmood Al Dossari, “Applying Extreme 
Programming in Educational Environment“, 
MSc project, Department of Computer Science, 
College of Computer and Information Sciences, 
King Saud University, 2005. 

[22] Lappo, P. (2002), "No pain, no XP: 
Observations on teaching and mentoring 
extreme programming to university students", in 
‘Proceedings of the Third International 
Conference on eXtreme Programming and Agile 
Processes in Software Engineering’, Universit´a 
di Cagliari and Free University of Bolzano-
Bozen, pp. 35–38. http://www.xp2002.org/prog 
full.html. 

[23] JUnit Java unit testing framework. Available 
URL http://www.junit.org/. 

[24] NUnit testing framework. Available URL 
http://www.nunit.org/. 

[25] HttpUnit web page unit testing tool. On-line at 
http://httpunit.sourceforge.net/ 

[26] B. F. Hanks, “Distributed Pair Programming: An 
Empirical Study”, Springer Lecture Notes in 
Computer Science, Volume 3134/2004, Extreme 
Programming and Agile Methods - XP/Agile 
Universe 2004, pp. 81-91. 

 




