25

Menofia University
Faculty of Electronic Eng., Menof
Final-Term Exam, for 3rd year

Medical Electronics Time Allowed: 3 H 12 January 2020

January 2020

Answer the following questions:

Question 1 [20 Marks]

[1-a] Define the following terms: The resting potential, hyperpolarization, ion pump, sensitivity and depolarization.

[1-b] Compute the change in Vm due to a current pulse through the cell membrane for the circuit shown in figure 1.

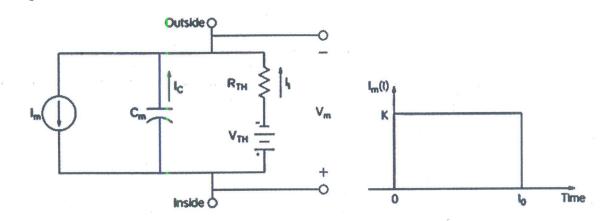


Figure 1

[1-c] A membrane is permeable to K⁺ and Cl⁻, but not to a large cation R⁺ as shown in figure 2. Find the steady-state concentration for the following initial conditions.

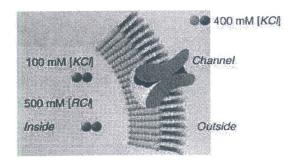


Figure 2

Question 2 [15 Marks]

[2-a] Draw the equivalent circuit model for the cell membrane and find the Thevenin's equivalent circuit of the model.

[2-b] Drive the equation of resting potential of a membrane permeable to one Ion.

[2-c] For the following circuit shown in figure 3, find V3.

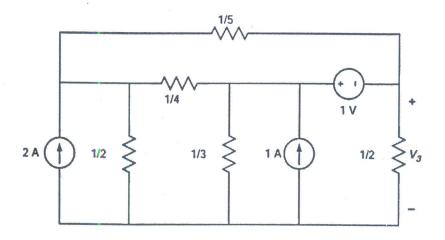


Figure 3

Question 3 [15 Marks]

[3-a] Draw the equivalent circuit model for the cell membrane and find the Thevenin's equivalent circuit of the model.

[3-b] Derive the Goldman equation for a membrane in which Na⁺, K⁺, and Cl⁻ are the only permeable ions.

[3-c] Find v in the following circuit shown in figure 4.

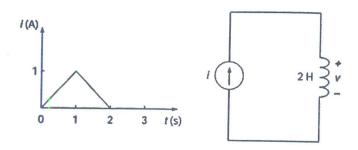


Figure 4

Question 4 [20 Marks]

[4-a] Consider a membrane in which there is an active K+ pump, passive channels for K+ and Cl-, and a non-steady-state initial concentration of [KCl] on both sides of the membrane. Find an expression for the active K+ pump.

[4-b] Find the overall gain for the following circuit shown in figure 5.

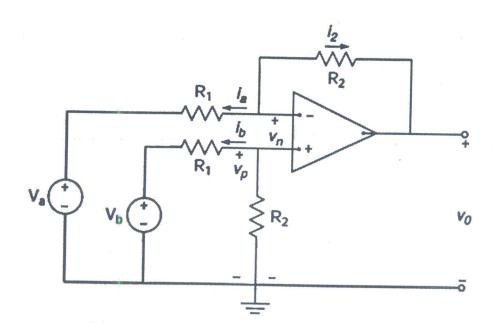


Figure 5

[4-c] Discuss the important considerations in the selection of materials for packaging of an implantable biosensor.

Question 5 [20 Marks]

[5-a] Discuss how the inductive Displacement Transducers work.

[5-b] Derive a relationship for calculating the output voltage across a piezoelectric transducer that has a thickness, d, and area, A, in terms of an applied force, F.

[5-c] The calibration tests of a new pressure transducer produced the readings in following table.

- (a)Plot the input-output calibration for this transducer.
- (b) Find the offset for readings between 0 to 200 mmHg.
- (c) Find the sensitivity for readings between 0 to 200 mmHg.
- (d) Estimate the average sensitivity for readings ranging between 200 to 300 mmHg.
- (e) State whether the response of this transducer over the entire measurement range is linear or nonlinear.

Pressure(mmHg) Reading (µV)			0		60	80	10	00 1	20	14	0 10	60	180	0	200	220
					40	60	8() 1	100		0 13	135		0	165	180
Pressure(mmHg)	240	260	280	300	32	0 3	340	360	3	80	400	42	20	44	40	
Reading (µV)	19	200	210	220	22	25	230	235	2.	37	239	2	40	24	0	