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A GOOD APPROXIMATE SOLUTION OF HEAT CONDUCTION EQUATIONS IN
CYLINDRICAL COORDINATES COMPOSITE MEDIA.
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ABSTRACT:

An approximate analysis of transient heat diffusion problem in two composite cylindrical
media is investigated. A new formulation of the problem is introduced in which the outer layer of
the composite cylinders is lumped by assuming a uniform temperature distribution throughout. The
temperature, however, is allowed to vary with time. This assumption reduces the two layers problem
to a one region problem with a new set of boundary conditions which compensates the effect ot the
lumped outer layer. The temperature distribution of the approximate formulation is then compared
10 the exact distribution obtained analytically. A "breakdown" criterion of the approximnation is
obtained.

1- INTRODUCTION:

The wansient temperature distribution in a composite medium consisting of several lavers in
contact has numerous applications in engineering [1-4]. Solving the problem of transient heat
diffusion in two-lavers composite is mathematically involved specially when discontinuities. which
appear [requently at the interface, must be dealt with. Because of its difficulty. these problems are
mostly treated numerically with some exceptions where analytic solutions were presented.

Heat conduction in cylindrical coordinates system is of interest in many applications such as
rocket walls, oil reservoirs, boilers, metal forming processes, nuclear engineering as well a5 in the
food processing industry. This problem has recently been treated in [3) numerically using finite
difference and in [6] numerically by first using Laplace ransform to remove the time variable
followed by a discretization of the spatial variable using a control volume formulation. The problem
is analysed for food products in [7]. An inverse heat conduction problem in cylindrical coordinate is
presented in [8).

This paper presents a formulation which simplifies the mathematical analysis of the transient
heat diffusion problem in composite cylinders by producing a single goveming equation with a
modified set of auxiliary conditions. In this formulavion, the outer layer of a two composite
cylinders is iumped by assuming a uniform temperature all over at any given instance. Howexer. the
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temperature is allowed to vary with time. This assumption reduces the two-layer problem to one-
layer problem with a new set of boundary conditions which compensates the effect of the outer
layer. A limiting criterion, where breakdown of the approximation occurs. is found by comparing
the solution of the proposed fermulation to the exact solution for different sets of the dimensionless
parameters involved.

2- STATEMENT OF THE PROBLEM:

A two-layer solid cylinder contains an inmer region 0 £r £ R,, and an outer region
R, € r g R,, which are in perfect thermal contact. k, and k, are the thermal conductivities, o, and
o, are the thermal diffusivities of the inner and outer region, respectively. Initially, the inner and
outer regions are at a uniform temperature T,. For times t > 0, heat is dissipated by convection from
the outer surface at r=R,, into an environment at a constant temperature T,, with a heat transfer
coefficient h,. Finally constant thermophysical properties of the two-layers composite ¢ylinder are
assumed.

GOVERNING EQUATIONS:
The governing equation in the i-th layer of the composite may be written as [9] :
a[?ﬂ“m+15m“ﬂ_5mﬂ”

r,srsrn, i=12,

I\ a° r & a ’ !
=0, n=R,, h=R,, t>0 H
subtect to the boundary conditions: _
T,(0,t) = finite, t>-0 (2-a)
Ty (Rig; 1) = (R, th t>-0 {2-b)
T (R, 2(R; ¢t
kla I(Am t)=k10~r.(l}m ), t>0 {E-c)
or or
t
kT2 Beol yy n(R,,0-T)=0, >0 (-1
cr
and the initial condition:
Ti(r,0) = T,. i=12, 0srsR,, 13
where,
o = b0 ) i=1,2

piC;
is the thermal diffusivity of the i-th layer, with p, and C; being the density and the specific heat of
the i-th layer, respectivily,

Defining the following dimensionless quantities:
I at _Tir,)-T,

| it T=— 91 )= e ————,
n R, RZ (1, 7) T, - T, .
{
Rou - Rin ki &; hcnR'iu
§='_"_ ] K|=_‘1 Fi= = H2= 3
R k, o, k,

The governing equations (1), (2) and (3) may be written in dimensionless form as:



Mansoura Engineering Journal, (MEJ), Vol. 23, No. 2, June 1998. P 3

56 )y 188,(n,1 &8,(n 1) .
},{ (7 )+ 89,(n )J: i;f s B SaSy. =12,

oy’ n
M=0.n=L m=1+§, 1-0 {5)
subject to:
#,(0,7) = finite, >0 (6-2)
8,{1,7y=6,(1, 1) >0 {6-b)
OQ‘EI’T) =K, 99,(L,7) , >0 {6-c)
an on

i‘g’—“&;—‘f’ih H.0,(1+ &,) = 0, £ 0 (6-0)

and the initial condition:

9'!('?!9)=19 i1 = ’?("hs "_17 (?}
To find the temperature distribution in any layer, one must solve the system of partial differemiai
equation coupled at the interface described above.

3- EXACT SOLUTION:

Although lengthy and mathematically involved, the anaiytic solution of the problem
described above is needed for validaling the proposed simplified analysis. We follow the procedures
of [9] 1o obtain the analytic solution by employing the finite integral transform technique. The
integral transform pair needed for the solution may be developed by considering representation of
an arbitrary function in terms of eigenfunctions comesponding te the eigenvalue problem associated
with the system described by equations {5) and (6). Such eigenfunctions, v, (n) are found 1o be:

() = &, Jo(S2m), 0<n<l, n=1,2,3,.. (8-0)
\h’r
' A

Wi (MY =4, Jy(—2=n)+B, Y(—=n), 1sn=sl+§, n=12.3,... (8-by -

where J, and Y, are Bessel functions of arder zero of the first and second kind. respectively.

The first step in the analysis is the delermination of the three coefficients A, . A, and
B,,. Without loss of generality, we set one of the coefficients. say A, . equals to unity. The
eigenfunctions given by equations (8), with A, =1, are then introduced into the conditions
complementing the eigenvalue preblem associated with the sysiem given by (5) and (6). The
resulting system of equations, expressed in matrix form, is:

Jo("'d") _Jo[_'LL] -t 4n ) 1 [I‘:
o 47 ‘Jrz \[J?'e |
'r-, 1 e A 4
—J == —dy(—==t -Yi—=%) Ay e[ 0 {9)
i Jh V2 "N -
4 A ). I+ A 11 I+
0 l“:‘ln)( nl -CJ nl ‘.‘) n { s‘)

N S L

where J; and Y, being Bessel functions of order one of the first and second kind. respectively,

Any two of these equations (9) can be used to determine the coefficients A, end B, . Choosing
the first two equations, one gets:
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A:.m—{;ru(%w.(‘—fu— PR ”'" )3 i )], (10-a)

¥ N2 Y
r__._.
Bz‘n= l\‘ V/“

“|
—1J { )J( )-J ( )J( (10-b)
V?’l k, ? VY2 .r—" N N _‘

me:
A,

The transcendental equation of the eigenvalues A, , n =1,2,3,... is obtained from the requirement

[

where, A = -

that the determinant of the coefficient matrix in equation (9) should vanish. The eigenfunctions
given by equations (8} satisfy the following orthogonality relation:
0 )
2 K,
Y=L [n¥im (M ia(mdy = (1)
=17, N(A,, , m=n

m=n

where D, from 0 to 1, and D, from 1to 1+ &. The normalization integral N( ) is given by:
N(l..)“'-"M (l.,l)+ A’ M3 (A, 14+ 8) =My (R,, )]+

%‘ alMs m.m;) M (l=r1J1+~lB= (ML (A, E+8) =M, (1],
[l=1,-,3,... {]2)
with,
3 ' z?.nrg
M, (A,,7) = 4| J3 (5 21N
l 2 [ i \”’l \":": ]
M!(’J"n’r})="%:' u(\// Y+ J7 (-Jy_)}
:‘ 1 ) ;
My(Aam) = ‘i‘ u(-\/-Z)Y (Jy—?)) +J (jﬂ)\’,(ﬁ”)],
i .
MM..u?)=”2 ‘};q)+Y (J'/'_")], and

Ay, and B,, are gm:n by (10).

Having obtained expressions for the eigenfunctions, the eigenvalues and the normalization
integral, we now proceed to find the general solution by following the usual procedures of the finite
integral transform technique. We begin by defining the transform pair as follows [9]:

Integral Transform

2 k.
D, () = Z}—' [nwia(méi(n7)dy , n=123,.. (13-2)
=17 v,
Inversion Formula
8i(mt) = Z M(‘Dn(f} H i=12. {13-b)

o=| N{’ln}
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Using integral transform above, the system of govemning equations given by equations (3) subject to
the boundary conditions given in equations {6) is reduced to a systemn of first order differential

equations in the dimensionless ransform variable, namely;
9%"Q+ A (r)=0, n=123,.. (14)
T

subject to the following transformed dimensionless initial conditions:
K A, o k(1 A1+ A, (1+¢
mn(9)=“_‘—’J|(““L)+M[Az.n-’l(—(_ﬂ)”*Bz.nYl(_{—'ﬁ) -
N TN N A Vra 72
k, i A
(A, J (7= 3+ B, Y (%), n=1,2.3,... (s)
The soiution of the system given by equations (14) and initial conditions (13} can be writien as:
@,(r) =D (M e |  n=123..

Utilizing this sclution into the inversion formula (13-b}), one obtains the unsteady dimensionless
temperature in each region as:

i Wln(’?) At .
&inr)=3 ———=@ (e |, i=L2 (16)
29= 2 Ray OO
where w; . {n) and N{}&,) are given by equations (8) and (12), respectively.

This expression will be used in the validation of the aliernative formulation presented next.

4- THE ALTERNATIVE FORMULATIOM:

The alternative formulation suggests a way for finding the temperature distribution in the
region of interest directing without haviag 1o solve for the temperature in all regions. In this
alternative formulation the layer of interest is considered and other layers are lumped by assuming
uniform temperature at any instance but allowing the temperature to vary with time. The
mathematical problem is thus reduced to a single partial differential equation subject 10 some
madified boundary conditions. We demonstrate this method on the two-layer probiem presented
above. The outer layer {outer cylinder) is lumped by assuming a uniform temperature which is
allowed to vary with time. A boundary condition which compensates the effect of the outer layer is
derived by assuming the quantity of heat due to the average temperature T: (1) is equal 1o lhe

quantity of heat into the outer layer at any given instance or, briely;
R

[ Ty, = 2R3, - RL)Ti(0)

Ry

By this assumption the governing ficld equation of the lumped layer problem can be easily derived.

Governing Equation:
A suitable form for the governing heat conduction equation of the lumped layer problem
may be written as:
ﬂ,(r,:)+ 10(r.t) _ 1 SN(r,1)
Y r & a a

0<rsR, , t>0 (7
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subject to the modified boundary condition: a
I (R, )

- ,C
Rk, 0B g b (TR0 - T} = - 222 R2, -RHTIE®D, 150 13)
or 2 a
and the initial condition:
T(r,0) =T, 5 0=sr=<R, (19
The above system can be transformed into the dimensionless form
5191(71,1) 1 98,(n,1) 591(71,‘5)
Lt o A = . 0sn<t, 10 (20
on? n ox " )
subject to the modified dimensionless boundary condition:
——59‘“”)+H,9,(1,r)=_%r-—09';:‘7), r>=0 {21)

and the dimensionless initial condition:

&,(n.0)=1, LELESE (22}
Where, besides the dimensionless quantities in (4), we defined the fellowing dimensionless
quantities:

Tl(r’t)_Tw H. = h-‘a:Rou C= P:C: (Riu = R;’."]
’ ! ] - T .
T~ T, k, /Gy R;,

In

8(mt) =

Solution:
Solution of the problem described by equations (20-22) is obtained using the finite integral
transform technique. The eigenfunction corresponding to the n-th eigenvalue 4, is found 1o be:

¥1a() = Jo(4,7) (233

The eigenvalues are the roots of the transcendental equation:

L : 1. .2

‘inJ[(ﬁ'nJ‘(HlF;rﬂn)“'{l(’ln):o (24)
The orthogenality property with respect to a weight function w(n) may be established as:

A 9 m#n

JWDY (DY (i = (25)

i 1N(ﬁ.n} , m=n

where the weight function w(n) is found to be [10}:

1
w(n) = [1+5F5(n—l}]ﬂ (26)

where &(n — 1) is the Dirac delta-function.
The normalization integral is evaluated to be:

N(A,) =§(1+F)-13(4n>+§1fun> 2N

The appropriate transform pair can now be defined as:

Integral Transform:

1
®,(r) = I(l+%ram—1))w,_n(n)91m.r)dq (28.2)
L]
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Inversion Formula:

et y’l n(rf)
B.(mt) = -
(7 7) E] N(AL)
The usual procedure of the finite integral transform technique leads 1o the following dimensionless
temperanire distribution throughout the inner cylinder:

_ 2 Jold.m) _l_ 1 Al 9
91(7?,7) - '?::l N(/lﬂ) [/In JI(‘Zn)'*' ZFJU(R.“)]& (—9)

where N{).,) is given by (27).

D, () (28.b}

5- COMPARISON BETWEEN EXACT AND APPROXIMATE SOLUTIONS:

The exact and approximate solutions can now be compared in order 1o establish a
“breakdown" criterion by which the validity and accuracy of the lumped assumption is determined.
From the dimensionless parameters introduced in the analysis, it can be shown that the Biot numbser
of the inner cylinder (B =h Ry /k,), the thickness ratio(£), the thermal conductivity ratio (K ;)
and thermal diffusivity ratie (y,) which are given by relations in (4)are the dimensionless
parameters required for a valid coruparison.

5.1- RESULTS AND DISCUSSION:

A parametric study investigating the role ef the four parameters mentioned above, namely
B, Ki, v: and & has been carried out. The effect of each parameter is examined by allowing one
parameter to vary, at a time, while the other parameters remain fixed.
The study was conducted for a wide range of variables of each parameter. however, only
representative results are displayed in Figs.1-4 and in Table 1. Inall figures, solid lines denote
results from the solution of the two-region problem, and doned lines reprsent the solution of the
one-region approximation (the alternative formulation).

The effect of Bict nureber on the establishment of the temperature disteibution is shown in
Fig. |. A maximum difference of 6% cccurs when §,,=20, £=0.05 and K,=10 at ©=0.3.

11 ) 1.2
; g o
& . s 08
s L]
8 £ 06
5 § 0.4
'g’ 03 E 0.2
a a 0

0.8 — Q.2

0 0.2 0.4 3.6 0.8 | 0 0.2 0.4 .6 a8
Dimensloniess Thickness ] iank Thick
B =0.1 K,_:IU ?1=2€=0.05 fin=10 Ky =10 v2=2%=0.05
Fig.l.a Fig.lb

Symbol | O | A ] O] & | m
|t [ o TJo25] 05 o] 1
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The effect of the thermal conductivity ratio K, isshown when (3;,. 7, and £ are kept at
fixed values is indicated in Fig. 2. One observes that the difference between the two formultions
decreases as K, increases. The maximum difference between the exact and approximale
formuiations for the given results is about 10% at K,;=0.5, §=0.03, B,,=1 and t=1.

&1 s 1.2
g g
2 0 g 0.8
50 S 06
20 g
é 204
ED £
o 0.2
0 02 04 06 08 i ¢ 02 04 06 03 '
Dimensionless Thickness Pimenslanlasy Thisknesy
Bi=1K:=0.5 y;=1E=0.05 b 2 Ty 0 7y 2} £ =0.09
) Fiof).a Flg:b
g.2.
[ Symbol D A ) ) |
i 0 [025] 05 ]075] 1

The effect of the thermal diffusivity ratio v, is displayed in Fig. 3. Results show that for a

given set of values P, vy, and &, the effect of the thermal diffusivity results in little deviation
between the two solutions.

Dimenslonless Temp.

1.1 4 1.2
§ 1
1 i =
§ u.o
0.9 E 0.6
2 0.4
o E 0.2
a
0.7¢ \ 0
0 0.2 Q.4 0.6 0.8 1 0_ 0.2 0.4 0.6 0.8 1
Dimensgioniess Thickness Dimensioniess Thickness
Bn=1K;=10 y;y=0.1 £=0.05 Bia=1K;=10 y5=10 £ =0.05
Fig3.a Fig.3.b
Svmbol O A 8] & | ]
T 0 025 | 05 | 0.75 |

The effect of the thickness ratio & on the two formulations is shown in Fig. 4. Results Show
that the difference between the solutions of the two-regions problem and the simplified one-region
problem increases as & inceases. For thickness ratio £=0.5 and when B, =2, K,=10 a maximum
difference of about 3% is calculated.



Mansoura Engineering Journal, (MEJ), Vol, 23, No. 2, June 1998.

0
]

o o«
o &

Dimenslonless Temp.
= I o] —
L= S ]

o

G 0.2 0.4 046 0.8
Oimenslonless Thickness

ﬁh‘=2 K1=lﬂ 71=I E=0-0!

Figd.a

P. 9
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] 02 0.4 0.6 0§ 1

Dimensianiess Thickness

Bin=2K;=10yy=1§=0.35

Fig.4.b

Symbol

o o

T
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It is interesting to observe that a common factor among all cases discussed above appears.

That is, in spite of the different combination of values considered for the four parameters, an

acceptable approximation is always achieved whenever the ratic between f;,, & and K, is less than

0.1, Le.
X, < 0.1 (2
This value is venfied by computing the above ratio for all cases studied in Table. 1. If the
dimensionless quantities is introduced in the left hand side of inquality (30). one can get
hn{Ro. - Rin! -
=< 0.1 (3
k;

Table. 1.

B ¥4 K. E B £/K, Max.error |
1 0.1 10 0.05 0.005 0.2%
i l 10 0.05 0.005 0.5%
1 10 10 0.05 0.005 0.8%
] 20 10 0.05 0.005 0.9%
1 L 0.5 0.05 0.} 10%
1 1 1 0.05 0.05 6%

1 1 10 0.05 0.005 0.5%
1 1 100 0.05 0.0005 0.01%
1 ] 10 0.05 0.005 0.5%
1 1 10 0.1 0.01 0.8%
1 } 10 ] 0.1 3%
1 1 10 2 0.2 5.2%
1 I 10 0.05 0.003 1%
5 1 10 0.05 0.025 3%
10 1 10 0.05 0.05 5%
20 1 10 0.05 0.1 6%
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6- CONCLUSIONS:
A simplified one-region formulation for the transient heat conduction problem in a two-layer

composite in cylindrical coordinates was considered. The problem is reformulated by lumping the
outer layer (cylinder) and treating it as a thin film, thus introducing its effect in a modified boundary
condition. Solutions of the two-regions and the simplified formulations were examined through a
parzmetric study of the Biot number, the thermal conductivity ratio, the thermal diffusivity ratio and
the thickness ratio of the two layers. It was found that a valid approximation can be achieved if the

relation given by the inequality (31) is satisfied.
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