Menofia University

Faculty of EngineeringShebien El-kom

Basic Engineering Sci. Department.

Academic Year: 2016-2017

Date: 31/12/2016

Subject: Numerical Analysis

Code: BES 601

Time Allowed: 3 hours

Year:Master

Total Marks: 100 Marks

Answer all the following questions: [100 Marks]

- Q.1 1) Define briefly each of the following expressions: [50]

 Interpolation- Chebyshev norm- Splines- Digital image.
 - 2) Write a Matlab code to find the cubic spline for function y = sinx in the interval [-3:3].
 - 3) Use the numbers $x_0=2$. $x_1=2.75$. $x_2=4$ to find the second Lagrange interpolating polynomial for the function $f(x)=\frac{1}{x}$, and use this polynomial to approximate f(3) and f(3.5). Then Write a Matlab code to find this polynomial.
 - 4) Determine an approximate backward difference representation for $\frac{\partial^3 f}{\partial x^3}$ which is of order (Δx) , Given evenly spaced grid points $f_i.f_{i-1}.f_{i-2}.f_{i-3}$ by means of:
 - a) Taylor series expansions.
 - b) Backward difference recurrence formula.
 - c) Third degree polynomial passing through the four points.
 - 5) Derive a central difference approximation for $\frac{\partial^3 f}{\partial x^3}$ which is of order $(\Delta x)^2$.
 - 6) Use the Matlab environment to generate the **Wilkinson's Polynomial** and find the following statements:
 - i) State the command which calculates the root of this polynomial.
 - ii) State the command which calculates the value of this polynomial at

$$x = [-1, 2, i, NaN, inf]'.$$

Q.2 (A) Consider the following three-dimensional Helmholtz equation in [25] the following form:

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial y^2} + \lambda u = F(x, y, z),$$

with initial conditions:

$$u(0, y) = f_1(y), \quad u_x(0, y) = f_2(y),$$

$$u(x,0) = f_3(x), \quad u_y(x,0) = f_4(x).$$

Where;

 $F(x,y), f_1(y), f_2(y), f_3(x), f_4(x)$ and a, b, λ are given functions and given constant respectively.

Solve the two-dimensional Schrodinger equation using the differential transform method (DTM), in the following form:

$$F(x, y, z) = (12x^2 - 3x^4)\sin(y).$$
 $a = b = 1$, $\lambda = -2$, and $f_1(y) = 0$, $f_2(y) = 0$.

(B) Consider the following three-dimensional Helmholtz equation in the following form:

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial y^2} + c\frac{\partial^2 u}{\partial z^2} + \lambda u = F(x, y, z),$$

with initial conditions:

$$u(0, y, z) = f_1(y, z), \quad u_x(0, y, z) = f_2(y, z).$$

$$u(x,0,z) = f_3(x,z), \quad u_n(x,0,z) = f_4(x,z).$$

$$u(x, y, 0) = f_5(x, y), \quad u_z(x, y, 0) = f_6(x, y).$$

Where:

$$f_1(y,z), f_2(y,z), f_3(y,z), f_4(y,z), f_5(y,z), f_6(y,z)$$
 and a, b, b

 c, λ are given functions and given constant respectively.

Solve the three-dimensional Helmholtz equation using the differential transform method (DTM), in the following form:

$$F(x,y,z) = (12x^2 - 4x^4)x\sin(y)\cos(x).$$

$$a = b = c = 1$$
, $\lambda = -4$, and $f_1(y, z) = 0$, $f_2(y, z) = 0$.

(C) Consider the nonlinear singular initial value problem:

$$y'' + \frac{2}{x}y' + 4(2e^{y} + e^{y/2}) = 0$$

with initial conditions:

$$y(0)=0, y'(0)=0$$

Solve the nonlinear singular initial value problem using the adomian decomposition method (ADM).

(D) Consider the following Riccati equation

$$y'(t) = -(3 - y(t))^2$$
,

with initial conditions:

$$y(0) = 1$$

Solve the Riccati equation problem using the adomian decomposition method (ADM).

Q.3 (A) Consider the following non-homogenous differential system: [25]

$$\frac{dx}{dt} = z - \cos(t),$$

$$\frac{dy}{dt} = z - e^{t},$$

$$\frac{dz}{dt} = x - y$$

with initial conditions:

$$x(0) = 0$$
, $y(0) = 0$, $z(0) = 2$

Solve the non-homogenous differential system using the differential transform method (DTM).

(B) Consider the following systems of non-linear differential equations:

$$\frac{dx}{dt} + \frac{dy}{dt} + x + y = 1$$
$$\frac{dy}{dt} = 2x + y.$$

with initial conditions:

$$x(0) = 0$$
, $y(0) = 1$

Solve the non-linear differential systems using *the differential transform method (DTM)*.

(C) The governing equation of a uniform Bernoulli–Euler beam under pure bending resting on fluid layer under axial force is:

$$EI\frac{\partial^4 v}{\partial x^4} + p\frac{\partial^2 v}{\partial x^2} + k_f v + F(x,t) = 0, 0 \le x \le L_e.$$

with boundary conditions (Clamped-Simply supported):

$$at x = 0, W(x) = \frac{dW(x)}{dx} = 0$$

at
$$x = L_{e}, W(x) = \frac{d^2W(x)}{dx^2} = 0$$

Solve the Riccati equation problem using the adomian decomposition method (ADM). Then compared the results with exact solutions.

(D) Consider the following Initial value problem equation

$$\frac{dy}{dt} = t^3 y^2(t) - 2t^4 y(t) + t^5 + 1$$

with initial conditions:

$$y(0) = 0.$$

Solve the problem using the adomian decomposition method (ADM).

			This exam	measures tl	he following IL	.Os		
Question Number	Q1-a	Q1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c
	Q4-b				Q2-b	Q2-c	Q3-c	
	Knowledge &understanding skills				Intellectual Skills		Professional Skills	

With our best wishes Dr.Rizk Masoud Dr.Ramzy M. Abumandour