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SPEECH CODING IN THE SEQUENCY DOMAIN
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ABSTRACT

Digital transmission of speech  presents  the opportunily to provide a
more secure and bandwidth  efficient service with a consistent quality. The

feasibility and cost  efficiency of future sysiems depends largely on the
availability of low bit rate wvocoders. Orthogonal wransformations offer a
means for reduction of the bit rate necessary for the transmission of speech

signals. The ability to rteduce the bit rate resides in the fact that the
variance ' of the orthogonal function coefficients is far less than the
variance of the spcech  itsclf.

Discrete Walsh  and Haar 1transforms  are examined for their capacity 1o
rcduce the bit rate necessary to transmit speech  signals. The perfermance of
these transforms  when applied to bit rate reduction has been measured in a
mean square  error sense  {signal-to-noise ratio). High quality speech
reproduction i oblained  at bit rate of 24 Kbps.

[-INTRODUCTION

Historically, spesch  coders  have been divided into two broad
categorics, namely, waveform coders [1 -7] and vocoders [8 - 13). Waveform
coders  generally autempt to produce the original speech waveform according to
some fidelity criteia whereas wvocoders model the input speech according 10 a
speech  preoduction and/or perception model. The encoder computes optimum  model

parameters  (for a speech segment) which are then coded for transmission. The
speech  information is thus said to be “compressed” into the parameters. The
parameters received  at the decoder  describe a model which is used 1o

synthesise a perceptually close replica of the speech  segment. If any of
these paramelers  are corfupted, the synthesised segment  will be perceptually

different from the original. This suggests that model based low bit rate
speech  vocoders are inherently more sensitive to channel errors than waveform
type coders. Generally, waveform  coders have been more successful at
producing pgood quality, robust speech, whercas, vocoders are more fragile and
are more dependent on the validity of the speech production -model. Vocoders,

however, arc capable of operating at much lower bit rates (2 - 5 kbps).

In order w0 reduce the bit ralte of waveform  coders, efforts have
focused on aking greater advantage of speech production and speech
perception models  without making the algorithm  totally dependent on these
models as in vocoders (5] A general category of coder algorithms  which have
been relatively  successful in achieving this goal is the class of frequency
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this way different frequency bands can be preferentially enceded according to
perceptual criteria for each band, and quantising noise can be contained
within bands and prevented from creating harmonic distortions  outside of the
band.

Two basic types of [requency domain coders arc  considered in
literatures, namely, sub~band coders [14 - L8] and transform coders [19 - 24].
In the [first case, the speech spectrum is partitioned into a set of,
typically 4 - 8 sub-bands by means of a fiter bank analysis [12). In the
second case, a block by block transform analysis is used to decompose the

signal into frequency components. Both techniques  attempt to perform some
type of short time spectral analysis of the input signal, although the
spectral  resolution in the two methods is different. After encoding  and

decoding  the frequency components are used 10 resynthesise a replica  of the
input waveform by ecither filter bank summation or inverse transform means.

In transform  coding, the input signal is divided into time segments
which are windowed by an analysis  window. Each windowed time scgment is
transformed  to the frequency domain by means of an M point- discrete transform
{c.g. Fourier, Cosine, Walsh, .. etc) to produce the sampled shori-time
spectrum.  Synthesis  is achieved by inverse discrete transforming each sampled
short~lime spectrum {0 obtain ils time domain representation.

Walsh functions have been used in the processing  of speech signals in
several different ways: a5 a method of reducing the bandwidth occupied by the
transmiticd signals, as a tool for speech  synthesis, and as a technique for
automatic speech recognition. Impertant  contributions in bandwidth
compression were made by Campanellz  and Robinson [19], Shum et ai. [20) and
Zelinski  and WNoll (211 They showed  that advantape could be taken of Walsh
transform  to remove some of the redundancy  from transmitted  speech. A bit
rate of 48 kops compared with 56 kbps conventional J-law PCM coding was
reported.  Further reductions  werc reported later by  Zelinski and Noll (22],
and Tribolet and Crochiere [23]). Although they claimed a bit rate between 16
kbps and 9.6 kbps, this bit rate has been r1eached on the expense of higher
instrumentation complexity and degraded speech quality.

Fig. 1, shows a general ©block diagram of a transform coder gystem. In
which the input speech is buffered into short-time blocks of datz and
frequency  dormain  transformed. The {ransformed coefficients or frequency
components, as well as side information, are then quaniised, coded and
transmitted  to the receiver. The side information may contain the variance of
the transformed coefficients, the dominant coefficient number, the step size
of the adaptive  quantiser e, At the receiver side, the coefficients arg
decoded and inverse transformed into blocks. These blocks are th-an used to
synthesise the reconstructed speech  signal by a concatenation of the blocks.
From Fig. !, it can easily be seen that the system  complexity increases as
the data block length increases. For example, if the block length is 256
samples, then 2356 different quantisers  with 256 different bit assignments and
256 different step sizes are required to guantise the transformed
coefficients. Moreover, the side information are also computed, quantised,
coded, and multiplexed with the coefficient codes. FHence, one may say,
although, the bit rate for some transform coding systems is as low as 9.6
kbps [23], the computation complexity is enormously high. Therefore, the
expected  hardware  implementation cost for such  systems  would defeat their
bandwidith  compression target.

The aim of this .paper is to introduce a very simple transformm  coding
system for speech basecd on either Walsh or Haar transformation. A general
block diagram  for the proposed system  is shown in Fig. 2. This (figure
involves block transformation of buffered segments of the speech  waveforms.
Each segment is represented by a set of transform  coefficients  whigh arc
quantiscd and coded  sequentially using a single quantiser designed to
optimise  the signal-to-noise ratio (SNR) depending on the variance {or mean
square  value} of the transformed  coefficients a5 discussed in section I At
the receiver, the quantised coefficients are inverse transformed to produce a
replica of the original input segment. Successive segments when  joined,
represent  the input speech  signal.
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T-SEQUENCY DOMAIN TRANSFORMATIONS
" The class of block iransformatiom of intcrcst for speech  coding are

time-to-frequency transformations. Since a primary goal is to atwain  the
least audible coding wnoise, it is wnatural to control the quantisation noise
by controlling its characteristics in the frequency domain.  Particular  time-

to-frequency  transforms, referred w0 as the Waish and the Haar transforms,
are found 1o be well suiled for speech coding. These transforms  are now
introduced.

The Walsh functions form an ordered set of rectangular wavelorms
taking only two amplitude wvalucs +]1 and -1 and arc exampie of an orthonormal
set  of functions. These  functions are defined over a limited interval T,
known as the ume base. Twe arguments are required for complete definition, a
tuime period t (usually normalised 1o the time base as t/T) and an ordering
number n. The Walsh function is then written as WAL{n,1), and for most
purposes 2 set of such functons is ordered in ascending  value of the number
of zero crossings found within the time base.

Every function . f(t) which is integrable is capable of being
represented by a Walsh series defined over the open iaterval (0,1) as:

x(t) = a, + 2  WALILY + a,WALQR,) + ... 1)
where
i
ay = 5 FOWAL(K.D 4t (2)
=4
From this we aég ablc to define a transform  pair,
x) = 2 X(KIWALK.0 o
k=0
and
1
X(k) = 5 XOWAL()  di (@)
0

This definition applies to a continuous function limited in time over the
interval @ < t € 1. For numedcal usc it is counvepnient to consider a discrete
serics  of N terms set up by sampling the coatinuous  functions at N equally
spaced  points  over the open interval (0,1). In order that the properties  of
the continucus and discrete  systems  shouid correspond  then N must equal 10 a
power of 2, ie, N = 2P The integration shown in Eq.4) may then be
replaced by summation, and using the trapezium rule on N sampling points X
the f{inite discrete Walsh transform  pair can be written as:

N-{ '
X, = /M) > *;WAL,D) ; n=0,1,2,.... N-1 (5}
i=0
and
N-1
X = 2__ X, WAL(n,(i) :i=0,1,2,...N-1 (6)
=0

Since WAL(n,i) is symmetrical about the mid-point of the sequence,
i=0.1,2,.... N-1 when n is even, and anti~symmetric when o I8 odd, then it
follows that a sequence  x; wili have a transform composed  only of even order
Walsh  function coefficients if it is  symmetric about ity mid-point and be
composed only of odd-order coefficients if the series is inversely symmeiric.
The Haar functions also form 2 complete  orthonormal function set of
rectangular waveforms  proposed originally by Haar [25]. The f{unctions have
several important properties, including the ability to represent a given
function with few copstituent terms to a high degree of accuracy. The
ampliude  values of these square waves do not have uniform value, as with
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Walsh  waveforms, but assume 3 limited set of values, 0, +I, 1{5, +2, #2712,

44, etc. They may be expresscd in & similar manner 10 the Walsh functions as:
HAR(n, ).

If we consider the tme-base (o be defined as 0 £ t £ !, then we can

write:
HAR({D.t) = 1 i Dstxgl
1 : 0<1t< 1/2
HAR(L,t) =
jﬁl ; 1/2<€ 15
2 ;0 t< /4
HAR(2,G =]- {2 : /4 gt < /2
0 v 25tz
(7}
0 v D 1< 1/2
HARGG) = { {2 Co1/2 < t< 34
- E o 3dstrgd
[2P b /2P st <{nel/2)/2 P
HAR(2P«n,t) =%~ 2P o (/232 P st < (nl)/2 P
0 : elsewhere
where p = 1.2, ... and n=012,... 2P-1

This allows a sequenlial numbering system analogous to that adopted by Walsh
for his function series.

A given comtinuoys function f{t) with the interval 0 < t £ 1 and

repeated  periodically  outside  this interval can  be synthesised from a Haar
series by
2]
Iy = E CHAR(n,Y) (8}
r=0
where
i
Cp, = S f(YHAR(n, 1) dt 9
0

The discrete Haar transform and its inverse c¢an be stated as

X, = /N 5— ;HAR/N) 5 n=0,1,2,... N-1 (10}
#3-0

and

X = _2] K HAR(MI/N) 1 i=0,1,2,.. N-! (an
n=0
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M-QUANTISATION
Waveform coders  quantisc  amplitude  samples by rounding off each sample
value to one of a set of several discrete  values. . In a B-bit quantiser, the

number of these discrete  amplitude levels  is 2B. A fundamental result  in
quantisation theory is that the quantisation errar power is proportional 10
the square of the quantising step size, and since the step size is inversely
proportional 1o the total number of levels for 2 given total samplitude range,
a signal-to—quantﬁ?tian—error ratio {SNR) c¢can be defined that is
proporiional  to 2°¥. In logacithmic  units, SNR increases linearly with B. For
PCM which 1is basically a quantiser of sampled amplitudes, the performance

characteristic is of the form:

SNR (dB) = 6B - (12)

where 9 is a step size dependent  parameter. In the derivation of Egq.{l2) it
is assumcd that the range of the quaniiser is aligned with that of the signal
amplitudes at its input. This requirement is realised if the signal
amplitudes do not exceed the overlpad  points of the quantiser with any
stgnilicant probability, and if all quantiser ranges are utilized in some
cquitable  fashion. In practice, such quantiser input alignment is realised by
one of two techmiques, nonupiform or adaptive quantisation.

Nonuniform  guantisation is characterised by fine quantising steps {and
hence, a relatively small noise variance) for the wvery frequently occuring
low amplitudes in the sequency domaim  coefficients, while much coarse
gquantising  steps take carc of the occasional Jarge amplitudes in the sequency
domain coefficients. This problem was studied by Max {26) and later by Paez
and Glisson [27] who reported their rtesuits in a form of tables that will be
used in part of the current study.

While lime~invariant nonuniforms  guantiser has been used as a
traditional  solution to the large dynamic range problem, better results  can
be obtained by noting that the large dynamic range of the sequency  domain
cocificients is a result of nonstationary nature  of the speech  signal, so
that a truly optimal quantisation strategy 1§ one that is also tme-variable,
or adaptive (o the input signal. Adaplive quantisation utilizes a quantiser
characteristic {uniform or nonuniform) that shrinks or expands in time like
an accordion.  Although sequency  domain coefficients have a large dynamic
range over a Jong peried of time, their wvariance vary slowly enough to aid in
the design  of simple adaptation  algorithms to kcep track of these variations.

The basic idea of adaptive quantisation is to let the step size  vary
so0 as 1o match the variance of the input signal. Therefore, it is nec-ssary
to  obtain  an  estimate of the tme wvarying amplitude properties of the
scquency  domain  coefficients. On one hand, if the veriance is estimaied  from
the input iwself, the quantiser is <called feedforward  adaptive  quantser. On
the other hand, if the variance is estimated from the output code word, the
guantiser is called feedback adaptive quantiser. Feedback adaptive quantisers
have the distinct advantage that thec time-varying step size nged not be
transmitted  since it can be derived {rom the scguence of code words. The
disadvantage of such systems is increased sensitivity to errors in the code
words {(channel crrors).

A fcedback adaptive quantiser is used in part of the current study, in
which case, the wvariance of the transformed  coefficients  was assumed to be

properiional to the short-time energy of the coefficients. The short-yme
energy .may be defined as the output of a low pass [filter with input {n})
where ﬁ(n) is the decoded wvalue of the received code word. Therefore,
[+2a)
s
iy ) = > X2(m) h(n-m) (14)
Mo 00

where c,\—,%(n) is the wvariance of the decoded  coefficients and h{n) is the
impuise response  of the low pass [filter. The Jow pass filter used has a wvery
simple impulse response  given by
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Therefore,

. 24

(135)

(16)

Eq.(16) can easily be simplified to the difference equation form givern by
o) = 2n-1) + X2(n-1) 7
% = O-< g..-?z n (
where 0 < e¢ < | for stability. The time-varying step size for the adaptive
quantiser may now be given as
Dmy= A o—0) (18)
and
Dopin < B@ o< By,
A relatively constant  signal-to-noise ratio over a dynamic range of 40 4B
requires AN oo I min = 100
IV-SIGNAL-TO-NOISE RATIO
Voice quality of the recovered speech is wusually judged by subjective
quality tests.  Unfortunately, these tesis take much tmec and Jabour, and
require  a large number of trained listeners. Even though intclligibility is a
substantially subjective matter, it is  possible to use objective tests  which
are useful, if not ideal, indicators of inteligibility. The most common
objective  measure is the SNR defined as followss The difference  between
samples of a coded waveform and the original input waveform is defined as the
coding error. The square  of 1this quantity averaged over  an  appropriate
interval is termed the coding noise. The ratio of the average  value of the
square  of the input signal -to the coding noise is defined as the signal-to-
noise ratio {SNR). The quantity is often expressed in dB as 10 log o SNR.  For
the sequency  transform coding system reported here, the SMNR is defined as
2 2
= 2 2 2 2
(o Tl %/ o)
= Gp (BNR) a (19
where 5 2
OJ«S . G and o—~x A8re the variances of input signal,
quantisation noise, and transformed coefficients respectively, GT is a gain
factor {greater than 1) obtained due to orthogonal transformation process,
and {SNR) is the signal-to-noise ratio of the quantiser used. In dB wunits,
Eq.(19) is expressed as
SNR (dB) = G (dB) + (SNR) q dB) (20}
In the following section it will be shown that the SNR is increased by about
15 dB due to the redundancy removed by the orthogonal Walsh and Haar
transformations. This may be equivalent to an 8th. order linear predictor
which requires higher computation c¢omplexity as compared 10 sequency domain

transtormation.
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Y-SIMULATION RESULTS AND DISCUSSION

The results  prescoted here are based on some Arazbic speech  material
prepared  using C3IMC25  microprocessor unit dedicated to Speech applications.
The system is built round a Texas Instruments TMS320C25  digital  signal
processor, running  at 40MHz using stored program in a 64K x 8§ EPROM. and
having access to a maximum of 128K % B program RAM and 128K x & data RAM. Via
an interface card installed in an 386 IBM compatible  PC, we can download
programs  to the unit RAM, then run them. A cross Assembler is provided so
that TMS320C25 code can be gencrated on the PC, {or subsequent downloading.
A monitor program is provided to simplify communication between PC and CIMC25
unit. As shown in Fig. 3, three inputs are provided 5V , LINE (+#640mV), and
Microphone  input (+300mV). The input is fed to the ADS85 S/H which has a 3us
acquisition time, and is capable of sampling  full scale signals at a
frequency starts  from 1KH:z up to 100KHz (we used BKHz) with [2-bit precision.
Theinput  to the S/H can be cither via the input filter or the filter can be
bypasscd. The ocutput of the S/H passes to the ADTS72 A/D 12-bit converter,
running from a 2MHz clock, giving a conversion time of 6.25us.  The analog
input and resultant  12-bits of digital data produced can then be sampled by
the TMS320C25  processor  at a rate determined by the sample clock. This data
can  be stored and/or manipulated as desired, dependant on the program
downloaded, results  of the manipulated data may then be output or siored,
again dependant on program. The data oulput by the TMS320C25 goes 1o the
AD767 D/A converter, which has a 3us  settling  time. The analog signal then
appears &t the +5V output and the LINE output. As shown in Fig. 3, the signal
from the Microphone, after being converted 1o digital, can be stored in the
data RAM and 1hen transfered to the PC where it cam be recorded or
manipulated. Since all our processing, were conducted  off line, the data was
stored on the PC hard disk and the processed speech  was sent from the PC 1o
the CIMC25 unit for listening  tests.
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Numerous computer simulation runs were carmied out using Walsh  and
Haar  iransforms with linear, nonlinear, and adaptive quantisers. In all
experiments, Walsh  transform  provided  transformation gain Gt = 15 dB
irrespective of the speech  material, whereas the Haar transform  provided an
average Go of 9.4 dB, this is shown in Table 1. Table 2, shows the signal-to-
noise ratic of the quanuser  (SNR) for different types of quantisers and
different number of bits/sample. It Qcam be seen from Table 2 that adaptive
3-bit quantiser provides almost the same performance of the 4-bit nonlinear
quantiser, and the 4-bit nonlinear quantiser provides almost the same
performance of the S-bit linear quantiser. In other words, the 3I-bit/sample
(24 Kbps data rate) adaptve quantiser provides an average SNR almost equal
that. provided by the 35-bit/sample (40 Xbps data rate} linear quantser.
Moreover, listeners  prefered the output speech from the system  with adaptive
quantiser than the ouwtput fram the other systems  especially  during unvoiced
sounds or silence periods. This is duc to the fact that adaptive quantiser
provides constant SNR whereas linear quantiser provides constant quantisation
noise. Table 3, shows the tolal SNR in dB for each type of the quantisers as
applied to both Walsh and Haar transforms. Also shown the total bit rate and
the reduction jin the bit rate from 1the original 96 Kbps.

Table 1, Transformation ~ Gain G in dB

Walsh Haar
15.052 9.366
Constant average

Table 2, Averape (SNR) q of the Quantiser

E)uam. Type |No. of bits Walsh Haar
6 21.91 23.44

Linear
5 15.62 16.92
5 22.49 22.923
Nonlinear 4 : 13.613 16.78
3 11.374 11.043
Adaptive 3 13.96 14.20

Table 3, Total SNR for Different Types of Quantdsers

Quant. Type | No. of biws Walsh Haar Total Bit Reduct, in ‘1
per Sample Rate ( Kbps) | Bit Rate{Kbps),
6 36.962 32.8 48 48
Linear
5 30.672 26.285 40 56 |
5 37.542 3229 40 56
Nenlincar 4 28.665 26.145 32 64
3 26.423 20.41 24 72
daptive 3 | 29.012 23.57 | 24 | 72 ]
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Fig. 4{a) shows the waveform of the original speech  word /SOOD/ (male
spe aker) and Figs. 4(b, ¢, and d) show the corresponding wavelorms as
obtained from Walsh system  using 5-bit/sample linear, 4-bitfsample  nonlinear,
and 3-bit/sample adaptive quantisers respectively. It can easily be seen that
the three waveforms  in Figs. 4(b, c, and d) are similar during the voiced
part between samples 2500 and 5300. However. the output from the 3-bit/sample
adaptive  quantiser is identical to the original speech during the unwvoiced
part between samples 2000 and 2500 also between samples $300 and $500. This
is why listeners favoured the speech from the adaptive  quantiser  than that
from linear and fixed nonlinear quantisers.

Fig. 5(z) shows the power spectral of the ariginal  speech  for the
Arabic voul /]/ (male ‘speaker) as obtained by S12 point FFT, and Figs. S(b,
¢, and d) show the corresponding power specttals from the Haar system with $-
bit/sample linear, d-bit/sample nonlinear, and 3-~bit/sample adaptive
quantiscrs respectively. It can be seen that the power specirals in Figs.5
(b. c, and d) fit the original spectral  density in Fig. 5(a) especially
during the first three formants. The effect of quantisation neise  is  clear
between the formants especially in the case of S-bit/sample  linear quantser
in which case the quantisation noise  may mask the speech during low power
regoins  (e.g. betweern the formants and at the high frequencies).
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Fig. 4, a)Original Specch Waveform  for /scod/ as Spoken by Male Speaker
b, ¢, and d) The Corresponding outputs  from Walsh System



Mansoura Engineering Journal (MEJ),Vol.18.No. &, Dec. 1993 E. 28

CC>

HAAR (2000-2512)

4 bR/ rampte nonlima
%
Kormalsed Frequency HR

——

() =prpibem

()

1%
Wormalmed Fraqiuncy (H1

ORIGINAL (2000-2512)
12 bha/ sample

[}

-4
=10
-1
~an
-2
=33
=34
—4y

(ew) apryplom

Fig. 5, a}Powcr _Spcc}ra.l Density  of Original

(dy

., HAAR (2000-2512)
3 blaSrernple adapihe Trea

m
02
Kormallsed Fraquency (HD)

|

Spcech

_—
~
o —
-
3
~
u
o)
|
Q% I
-
N
T Th
£ _-:E__‘
- —_—
%5 = Ly

S
Voul /4/f Male Sneaberd

Wormnadsd Froquency Hi)



E.

29, Fayez W. Zakd.

CONCLUSIONS

A very simple  scquency  transform speech  coding  system  is introduced
and discussed. Walsh and Haar transforms  are used as redundancy removal
transforms due to their inhcrent simplesity in carrying out transformation
since this requires only addition and subtraction. These transformations may

be realised in future applications  wusing neural network techniqucs,

The introduced  systern  provided good quality speech  at data rates
beiween 24 and 48 Kbps with a corresponding data reduction rate between 72
and 48 Kbps. The 24 Kbps system  using adaptive quantser may find i
applications in commercial voice communication by mobile radic and/or
gatellite  comumunication sysiems.
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