Menoufia University

Faculty of Engineering, Shebin El-Kom, Basic Engineering science Department Second Semester Examination, 2016-2017

Date of Exam: 12/6/2017

Subject: Applied Numerical Analysis

and Programming.
Code: BES 512

Year: Postgraduate students

Time Allowed: 3 hours Total Marks: 100 marks

Answer the following questions

1) Use linear finite difference method to solve the following Boundary Value Problem (BVP) given by y'' + (x+1)y' - 2y = 4x - 2.

$$y(0) = 1$$
, $y(1) = 0$, $0 \le x \le 1$, $h = 0.2$,

- 2) Derive an approximate backward difference representation for $f'''(x_i)$, given evenly spaced grid points $f(x_i)$, $f(x_{i-1})$, $f(x_{i-2})$, $f(x_{i-3})$ by means of :
- i) Taylor Series Expansions,
- ii) A Forward Difference Recurrence Formula
- 3) If $f(x) = x e^x$.
- (i) find an approximate value for f'(x) at x = 2 with h = 0.2 using:
 - a) Forward difference formula
 - b) Backward difference formula
- (ii) Apply Richardson's extrapolation process to evaluate $N_1(h)\mbox{,and }N_2(h)$.
- 4) Solve the following BVP

$$y'' - \frac{3}{x}y' + \frac{3}{x^2}y = 2x^2e^x$$
, $1 \le x \le 2$, with $y(1) = 0$ and $y(2) = 4e^2$, using the linear shooting method with $h = 0.1$.

5) Find the curve of best fit of the form $y = ab^x$ to the following data using method of least squares.

X	2	3	4	5	6
у	8.3	15.4	33.1	65.2	127.4

- 6) Given $y_1' = y_1y_2 + x$, $y_2' = xy_2 + y_1$, $y_1(0) = 1$, $y_2(0) = -1$, find $y_1(0.1)$ and $y_2(0.1)$ by using Runge Kutta Method of fourth order.
- 7) The vertical distance in meters covered by a rocket from t = 8 to t = 30 s is given by

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100 t} \right] - 9.8 t \right) dt$$

- a) Use Romberg's rule and three-point Gauss <u>quadrature</u> rule to find the distance covered. Use the 1, 2, 4, and 8-segment trapezoidal rule,
- b) Find the true error for part (a).