Menoufia University Faculty of Engineering, Shebin El-kom Department of Electrical Engineering

Final Exam: 2018-2019

1nd Year

Course Code: ELE103 C_Title: Energy Conversion Time Allowed: 3 hour

Exam Date : 13/6/2019 No of page : 2 Pages

Notes:(Total Mark: 70, No. of questions: 3)

Answer the following questions in the same order and assuming any missing data.

Drawing should be cleared and well organized

Question 1: [30 Marks]

<u>Discuss</u> with the aid of diagrams the construction , operation of the <u>Fuel cell</u> and its application Α.

<u>Draw</u> a schamatic diagram showing a Hydro electric power station . <u>Illiustrate</u> the construction and operation of the power station.

The magnetic circuit shown in figure (1) of has dimensions A_c = 4 *4 Cm², L_g = 0.06 cm, L_c = 40 cm; N = 600 turns Assume the value of μ_r = 6000 for iron. Find :

The exciting current for Bc = 1.2 T

The corresponding flux

(Take fringing in considration)

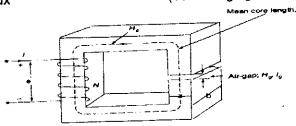
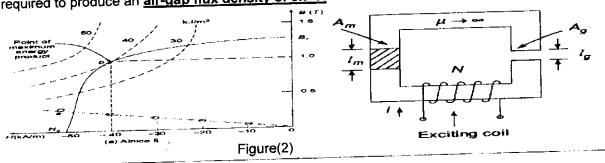



Figure (1)

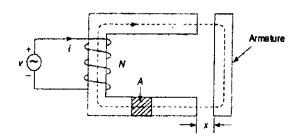
D. The magnetic circuit shown in the Figure (2)consists of a core of very high permeability ($\mu_r = \infty$) and an air-gap length of $L_g = 0.4$ cm and Ag = 3.0 cm². Find the minimum permanent magnet volume required to produce an air-gap flux density of 0.7 T.

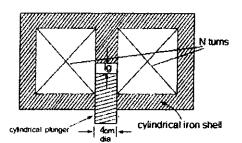
Question 2: [25 Marks]

A. In the electromagnetic relay shown in figure (3) the exciting coil has 1000 turns. The cross sectional area of the core is A = 5 cm * 5 cm. Reluctance of the magnetic circuit may be assumed negligible. Also neglect fringing effects.

1. Find the coil inductance for an air-gap of x = 1 cm

2. Calculate the field energy when the coil carries a current of 2.0.


3. Derive an expression for force on armature as a function of x and With constant coil current of 2.0 A. Find the work done by the magnetic field when x changes from X_e = 1cm $t_0 X_h = 0.5 cm.$


4. Find the force on the armature as a function of related as: [$i = \lambda^2 + 2 \lambda (1-x)^2$ x < 1]

B. The Figure (4) shows the cross-sectional view of a cylindrical iron solenoid magnet. The plunger which has been made of iron is restricted by stops to move through a limited range

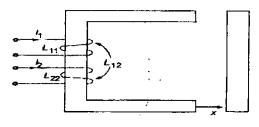
The exciting coil has 1500 turns and carries a steady current of 3 A. Assume that all reluctance offered only by the air-gap Lg and Magnetic leakage and fringing to be neglected.

- 1. Find the <u>air-gap flux densities</u>, <u>coil inductance and energy stored in the magnetic field for air-gap lengths of 2.0, 1.5 cm.</u>
- if the plunger is allowed to <u>move slowly</u> from ig =2.0 cm to ig =1.5 cm Find :
 - Mechanical work done.
 - II. Electrical energy supplied by the source, neglect the coil resistance

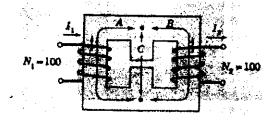
Figure(3)

Figure(4)

C. The flux in a magnetic core is alternating sinusoidal at a frequency of 600 Hz. The maximum flux density is 2 T and the eddy current loss is 15 W.Find the eddy-current loss in the core if the frequency is raised to 800 Hz and the maximum flux density is reduced to 1.5


Question 3:[15 Marks]

A. The two coils of the magnetic circuit shown in figure(5) have self- and mutual-inductances as follow:


$$L_{11} = L_{22} = 4 + \frac{1}{2x}$$
 $L_{12} = L_{21} = \frac{1}{2x}$

Calculate coil currents and the time-average force at x = 0.5 m when:

- Both the coils connected in series across a voltage source of 100 cos314t
- Both the coils connected in Parallel across a voltage source of 100 cos314t
- Coil 2 is shorted while coil 1 is connected across a voltage source of 100 cos314t

Figure(6)

- B. The coils of the magnetic circuit shown in figure (6) are connected in series so that the mmf's of paths A and B both tend to set up flux in the center leg C in the same direction. Neglect fringing and leakage . ($\mu_r = 2000$), (Cross section area of A and B Legs =12 Cm² and Leg C =24 Cm²) and (Length A and B path=15 Cm and C path=5 Cm and air gap =0.4 Cm).
 - The current require in each coils to set up a flux density of 0.6 Tesla.
 - The self-inductance for each coils and Mutual inductance.

This exam measures the following ILOs			
Skills	Knowledge &Understanding Skills	Intellectual Skills	Professional Skills
Question Number	Q1A, Q1B,Q2C,Q1D	Q1C,Q2B,Q1B	Q2A, Q3B
With Best Wishes		Dr.Dina shaban	