Menofia University

Faculty of Engineering Shebien El-kom

Basic Engineering Sci. Department. First semester Examination, 2017-2018

Date of Exam: 2 / 6 / 2018

Subject: Partial Diff. Eqs.

Code: BES 507 Year: Master

Time Allowed: 3 hrs Total Marks: 100 Marks

Answer the following questions

Two Pages

Question I (20 MARKS)

- (A) Classify according to parabolic, elliptic or hyperbolic: of the following P.D.Es.:
- (i) $2u_{xx} 4u_{xy} 6u_{yy} + u_x = 0$

(ii)
$$4 u_{xx} + 12u_{xy} + 9u_{yy} - 2u_x + u = 0$$

(iii) $u_{xx} - x^2 y u_{yy} = 0 \ (y > 0)$

$$(iv) e^{2x} u_{xx} + 2e^{x+y} u_{xy} + e^{2y} u_{yy} = 0$$
 (5 Marks)

- (B) Determine whether each of the following PDEs are linear or nonlinear, homogenous or nonhomogenous. State the order, degree and name of the dependent and independent variables:
- 1- $u_t = k u_m$ where k is constant

$$2-xu_{xx}=y(u_{yyy})^2$$

$$3-uu_{xx}=xyt$$

(5 Marks)

- (C) (i) State the various types of boundary conditions?
 - (ii) In the following BCs. state the type of them:
- (i) $u(0,t) = a_o$, (ii) $u'(L,t) = a_o$

$$(iii) u'(0,t) = f(x) ,$$

$$(iii)\,u'\bigl(0,t\bigr)=f\bigl(x\bigr)\;,\quad (iv)\,u\bigl(L,t\bigr)+u'\bigl(x,10\bigr)=g\bigl(x\bigr)$$

(5 Marks)

(D) Show that the set of functions $\left\{\sin\left(\frac{n\pi x}{L}\right)\right\}$, n=1,2,3,... are orthogonal

on the interval (0, L).

(5 Marks)

Question 2 (40 MARKS)

- (A) Find the eigen values and the corresponding eigen functions of the Sturm - Louville B.V.P. $F''(x) + \lambda F(x) = 0$ subject to the following F(0) = 0 and F'(1) + F(1) = 0boundary conditions: (ID Marks)
- (B) Solve the following PDE $u_t = u_{xx} 6x$, 0 < x < 1, t > 0

Subject to the boundary conditions:

$$u(0,t) = 1$$
 , $u_x(1,t) = 2$

And Subject to the initial condition:

$$u(x,0) = x^3 - x \tag{15 Marks}$$

(C) Solve the following PDE

$$u_t = k u_{xx} \quad , \quad 0 < x < L, \ t > 0$$

Subject to the boundary conditions:

$$u(0,t)=1$$
 , $u(L,t)=2$

And Subject to initial condition:

$$u(x,0) = f(x)$$

(15 Marks)

Question 3 (40 MARKS)

(A) Solve the following PDE

$$u_{xx} + u_{yy} = (1/\alpha)u_t$$
, $0 < x < \alpha$, $0 < y < b$, $t > 0$

Subject to the boundary conditions:

$$u_x = 0 \ at \ x = 0, \ u_x + h_2 u = 0 \ at \ x = a$$

$$u = 0$$
 at $y = 0$, $u_y + h_4 u = 0$ at $y = b$

(20 Marks)

$$u = f(x, y)$$
 for $t = 0$

(B) Solve the heat equation with steady source

$$u_t = ku_{xx} + x$$
 , $0 < x < 1$, $t > 0$

with the boundary conditions:

$$u(0,t) = 0$$
 , $u(1,t) = 0$

And initial condition:

$$u(x,0) = f(x)$$

(20 Marks)

		This e	xam measur	es the follov	wing ILOs				
Question Number	Q1-a	Q2-a		Q2-b	Q3-b		Q1-b	Q3-a	
Skills		b-i		b-i, b-iii					
	Knowledge &understanding skills			Intellectual Skills			Professional Skills		

With my best wishes

Associate Prof. Dr. Islam M. Eldesoky